精英家教网 > 高中数学 > 题目详情
15.已知△ABC三顶点的坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,且满足$\overrightarrow{AP}$•$\overrightarrow{OA}$≤0,$\overrightarrow{BP}•\overrightarrow{OB}$≥0,则$\overrightarrow{OP}•\overrightarrow{AB}$的最小值是3.

分析 根据平面向量的坐标运算与数量积运算,求出x、y的取值范围,再求$\overrightarrow{OP}•\overrightarrow{AB}$的最小值.

解答 解:由已知得$\overrightarrow{AP}$=(x-1,y),$\overrightarrow{OA}$=(1,0),
∴$\overrightarrow{AP}$•$\overrightarrow{OA}$=x-1≤0,
解得x≤1①;
又$\overrightarrow{BP}$=(x,y-2),$\overrightarrow{OB}$=(0,2),
∴$\overrightarrow{BP}$$•\overrightarrow{OB}$=2(y-2)≥0,
解得y≥2②;
又$\overrightarrow{OP}$=(x,y),$\overrightarrow{AB}$=(-1,2),
∴$\overrightarrow{OP}$•$\overrightarrow{AB}$=-x+2y≥-1+4=3,
即$\overrightarrow{OP}•\overrightarrow{AB}$的最小值是3.
故答案为:3.

点评 本题考查了平面向量的坐标运算与数量积运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,有一块平行四边形绿地ABCD,经测量BC=2百米,CD=1百米,∠BCD=120°,拟过线段BC上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),EF将绿地分成两部分,且右边面积是左边面积的3倍.设EC=x百米,EF=y百米.
(1)当点F与点D重合时,试确定点E的位置;
(2)试求x的值,使直路EF的长度y最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体为(  )
A.四棱锥B.三棱锥C.三棱柱D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x||x+1|≤2,B={x|y=lg(x2-x-2)},则A∩∁RB=(  )
A.[-1,1]B.[-3,1]C.(-1,1]D.[-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知复数z满足z(1-i)=1(其中i为虚数单位),则z=$\frac{1}{2}+\frac{1}{2}i$ .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=2sin({2x+\frac{π}{3}})$,则$f({\frac{2π}{3}})$=-$\sqrt{3}$;若f(x)=-2,则满足条件的x的集合为$\{x|x=kπ-\frac{5}{12}π\;,k∈Z\}$;将f(x)的图象向右平移$\frac{π}{6}$个单位再向下平移2个单位,得到函数g(x),则g(x)的解析式为g(x)=2sin2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P在曲线C1:$\frac{x^2}{25}+\frac{y^2}{9}=1$上,点Q在曲线C2:(x-4)2+y2=1上,点R在曲线C3:(x+4)2+y2=1上,则|PQ|+|PR|的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=mlnx+nx,(m,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程是x-2y-2=0,则m+n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若$\frac{cosA}{cosB}$=$\frac{b}{a}$,$\frac{cosB}{cosC}$=$\frac{c}{b}$,则△ABC是(  )
A.直角三角形B.等腰三角形,但不是正三角形
C.直角三角形或等腰三角形D.正三角形

查看答案和解析>>

同步练习册答案