精英家教网 > 高中数学 > 题目详情
3.已知集合A={x||x+1|≤2,B={x|y=lg(x2-x-2)},则A∩∁RB=(  )
A.[-1,1]B.[-3,1]C.(-1,1]D.[-3,-1]

分析 化简集合A、B,根据补集与交集的定义写出运算结果.

解答 解:集合A={x||x+1|≤2}={x|-2≤x+1≤2}={x|-3≤x≤1},
B={x|y=lg(x2-x-2)}={x|x2-x-2>0}={x|x<-1或x>2},
RB={x|-1≤x≤2},
∴A∩∁RB={x|-1≤x≤1}=[-1,1].
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设数列{an}的前n项的和为Sn,且an=4$+(-\frac{1}{2})^{n-1}$,若对于任意的n∈N*,都有1≤x(Sn-4n)≤3恒成立,则实数x的取值范围是[1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y={0.3^{|{x^2}-6x+5|}}$的单调增区间为(-∞,1]和[3,5]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠BAD=α
(Ⅰ)用α表示AD和CD的长;
(Ⅱ)写出梯形周长l关于角α的函数解析式,并求这个梯形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是B1B,BC的中点,
(1)证明:EF∥A1D;
(2)证明:A1E,AB,DF三线共点;
(3)问:线段CD上是否存在一点G,使得直线FG与平面A1EC1所成角的正弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请指出点G的位置,说明理由;若没有,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)是定义域D内的某个区间I上的增函数,且$F(x)=\frac{f(x)}{x}$在I上是减函数,则称y=f(x)是I上的“单反减函数”,已知$f(x)=lnx,g(x)=2x+\frac{2}{x}+alnx(a∈R)$
(1)判断f(x)在(0,1]上是否是“单反减函数”;
(2)若g(x)是[1,+∞)上的“单反减函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC三顶点的坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,且满足$\overrightarrow{AP}$•$\overrightarrow{OA}$≤0,$\overrightarrow{BP}•\overrightarrow{OB}$≥0,则$\overrightarrow{OP}•\overrightarrow{AB}$的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从区间[-1,1]上随机抽取实数x,y,则|x|+2|y|≤1的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{an}中,a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,则a4=$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案