精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)求出利用导数的几何意义求切线斜率为,根据点斜式可得切线方程;(2)利用导数求出函数的极大值和极小值利用在区间上恰有两个零点列不等式组,求解不等式组即可求的取值范围.

试题解析:(1)由已知得,

时,有 ,

∴在处的切线方程为: ,化简得.

(2)由(1)知

因为,令,得

所以当时,有,则是函数的单调递减区间;、

时,有,则是函数的单调递增区间. 9分

在区间上恰有两个零点,只需,即,

所以当时, 在区间上恰有两个零点.

【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数零点问题,属于难题.求曲线切线方程的一般步骤是:(1)求出处的导数,即在点 出的切线斜率(当曲线处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三期中考试后,数学教师对本次全部数学成绩按进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:

(Ⅰ)求表中的值,并估计这次考试全校高三数学成绩的及格率(成绩在内为及格);

(Ⅱ)设茎叶图中成绩在范围内的样本的中位数为,若从成绩在范围内的样品中每次随机抽取1个,每次取出不放回,连续取两次,求取出两个样本中恰好一个是数字的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:

资源
产品

资金(万元)

场地(平方米)

A

2

100

B

35

50

现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).

(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;

(2)求数列{an}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别是三个内角A,B,C的对边,若2asinB= b. (Ⅰ)求A;
(Ⅱ)若a= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数对任意实数,都有恒成立.

(Ⅰ)证明:

(Ⅱ)若,求的表达式;

(Ⅲ)在题(Ⅱ)的条件下设,若图象上的点都位于直线的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对应的边分别为a,b,c(a≤b≤c),且bcosC+ccosB=2asinA. (Ⅰ)求角A;
(Ⅱ)求证:
(Ⅲ)若a=b,且BC边上的中线AM长为 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(常数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若曲线与直线相切,证明: .

查看答案和解析>>

同步练习册答案