精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+x2-xlna(a>1).
(Ⅰ)试讨论函数f(x)的单调性;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,试求t的值;
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
(Ⅰ)f'(x)=axlna+2x-lna=2x+(ax-1)lna.
∵f'(0)=0,且a>1.
当x>0时,lna>0,ax-1>0?f'(x)>0,
故函数f(x)在(0,+∞)上单调递增;
当x<0时,lna>0,ax-1<0?f'(x)<0.
故函数f(x)在(0,+∞)上单调递减.
(Ⅱ)当a>1时,由(Ⅰ)可知:f(x)在x=0处取得最小值,又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,
而t+1>t-1,所以t-1=(f(x))min=f(0)=1,由此可解得:t=2.
(Ⅲ)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
因此当x∈[-1,1]时,有:|(f(x))max-(f(x))min|=(f(x))max-(f(x))min≥e-1.
又由(Ⅰ)知:f(x)在[-1,0]上单调递减,在[0,1]上单调递增,
故当x∈[-1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(-1),f(1)},
f(1)-f(-1)=(a+1-lna)-(
1
a
+1+lna)=a-
1
a
-2lna

g(t)=t-
1
t
-2lnt (t≥1)
,因为g(t)′=1+
1
t2
-
2
t
=(
1
t
-1)2≥0
(当t=1时取等号)
因此g(t)=t-
1
t
-2lnt
在t∈[1,+∞)上单调递增,而g(1)=0,故当t>1时,g(t)>0;即当a>1时,f(1)>f(-1)
由f(1)-f(0)≥e-1?a-lna≥e-1?a≥e,综上所述,所求a的取值范围为[e,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案