精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=($\frac{1}{3}$x3-x2+$\frac{2}{3}$)cos2017($\frac{π}{3}x$+$\frac{2π}{3}$)+2x+3在[-2015,2017]上的最大值为M,最小值为m,则M+m=(  )
A.5B.10C.1D.0

分析 f(x)=$\frac{1}{3}(x-1)[(x-1)^{2}-3]co{s}^{2017}[π+\frac{π}{3}(x-1)]$+2x+3=-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1)+5,令g(x)=-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1),g(x)+g(2-x)=)═-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1)+$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(1-x)=0,所以函数g(x)的图象关于点(1,0)对称,得M+m=10.

解答 解:∵f(x)=$\frac{1}{3}(x-1)[(x-1)^{2}-3]co{s}^{2017}[π+\frac{π}{3}(x-1)]$+2x+3=-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1)+5.
令g(x)=-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1),
g(x)+g(2-x)=)═-$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(x-1)+$\frac{1}{3}$(x-1)[(x-1)2-3]cos($\frac{π}{3}(x-1)$)+2(1-x)=0,
所以函数g(x)的图象关于点(1,0)对称,
∴函数g(x)在[-2015,2017]上的最大值为M1,最小值为m1,M1+m1=0.
M=M1+5,最小值为m=m1+5.则M+m=10.
故选:B

点评 本题考查了函数对称性质与值域的转化关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知(1-3x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10,则a5+a6等于-162×355

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\frac{\sqrt{3}}{3}$x-y=0的极坐标方程(限定ρ≥0)是(  )
A.θ=$\frac{π}{6}$B.θ=$\frac{7}{6}$πC.θ=$\frac{π}{6}$和θ=$\frac{7}{6}$πD.θ=$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,且a≠1,函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{a})^{x}-1,x≤0}\\{{x}^{2}+(4a-1)x+3a-1,x>0}\end{array}\right.$在R上单调递增,且关于x的方程|f(x)|=x+1恰有两个不相等的实数根,则a的取值范围是(  )
A.[$\frac{1}{3}$,1)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=1-2sin2x在点$({\frac{π}{4},f({\frac{π}{4}})})$处的切线为l,则直线l、曲线f(x)以及直线$x=\frac{π}{2}$所围成的区域的面积为$\frac{π^2}{16}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数g(x)=(-x2+5x-3)ex(e为自然对数的底数),求函数y=g(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从1,2,3,4,5这五个数中一次随机取两个数,则取出的两个数的和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+x-2<0},N={x|x+1<0},则M∩N=(  )
A.(-1,1)B.(-2,-1)C.(-2,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某青少年成长关爱机构为了调研所在地区青少年的年龄与身高壮况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1000个,根据各年龄段平均身高作出如图所示的散点图和回归直线L.根据图中数据,下列对该样本描述错误的是(  )
A.据样本数据估计,该地区青少年身高与年龄成正相关
B.所抽取数据中,5000名青少年平均身高约为145cm
C.直线L的斜率的值近似等于样本中青少年平均身高每年的增量
D.从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线L上

查看答案和解析>>

同步练习册答案