精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x-$\sqrt{2}$y+6=0相切.
(1)求椭圆C的标准方程;
(2)已知点A,B为动直线y=k(x-2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使$\overrightarrow{EA}$2+$\overrightarrow{EA}$•$\overrightarrow{AB}$为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.

分析 (1)求得圆O的方程,由直线和圆相切的条件:d=r,可得a的值,再由离心率公式,可得c的值,结合a,b,c的关系,可得b,由此能求出椭圆的方程;
(2)由直线y=k(x-2)和椭圆方程,得(1+3k2)x2-12k2x+12k2-6=0,由此利用韦达定理、向量的数量积,结合已知条件能求出在x轴上存在点E,使$\overrightarrow{EA}$•$\overrightarrow{EB}$为定值,定点为($\frac{7}{3}$,0).

解答 解:(1)由离心率为$\frac{{\sqrt{6}}}{3}$,得$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,
即c=$\frac{\sqrt{6}}{3}$a,①
又以原点O为圆心,椭圆C的长半轴长为半径的圆为x2+y2=a2
且与直线$2x-\sqrt{2}y+6=0$相切,
所以$a=\frac{6}{{\sqrt{{2^2}+{{(\sqrt{2})}^2}}}}=\sqrt{6}$,代入①得c=2,
所以b2=a2-c2=2.
所以椭圆C的标准方程为$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.
(2)由$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+3{y}^{2}=6}\end{array}\right.$,可得(1+3k2)x2-12k2x+12k2-6=0,
△=144k4-4(1+3k2)(12k2-6)>0,即为6+6k2>0恒成立.
设A(x1,y1),B(x2,y2),
所以x1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$,x1x2=$\frac{12{k}^{2}-6}{1+3{k}^{2}}$,
根据题意,假设x轴上存在定点E(m,0),
使得${\overrightarrow{EA}^2}+\overrightarrow{EA}•\overrightarrow{AB}=\overrightarrow{EA}•(\overrightarrow{EA}+\overrightarrow{AB})=\overrightarrow{EA}•\overrightarrow{EB}$为定值,
则有$\overrightarrow{EA}•\overrightarrow{EB}$=(x1-m,y1)•(x2-m,y2)=(x1-m)•(x2-m)+y1y2
=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(k2+1)x1x2-(2k2+m)(x1+x2)+(4k2+m2
=(k2+1)•$\frac{12{k}^{2}-6}{1+3{k}^{2}}$-(2k2+m)•$\frac{12{k}^{2}}{1+3{k}^{2}}$+(4k2+m2
=$\frac{(3{m}^{2}-12m+10){k}^{2}+({m}^{2}-6)}{1+3{k}^{2}}$,
要使上式为定值,即与k无关,则应3m2-12m+10=3(m2-6),
即$m=\frac{7}{3}$,此时$\overrightarrow{EA}•\overrightarrow{EB}$=${m^2}-6=-\frac{5}{9}$为定值,定点E为$(\frac{7}{3},0)$.

点评 本题考查椭圆方程的求法,考查满足条件的定点是否存在的判断与求法,是中档题,解题时要认真审题,注意韦达定理、向量的数量积、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2-6x+4y+12=0,点P在圆上,求点P到直线l:x+y-5=0的最大距离和最小距离,并求最远点及最近点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x→x0时,f(x)→∞,g(x)→A(A是常数),试证明:$\underset{lim}{x→{x}_{0}}$$\frac{g(x)}{f(x)}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A'B'C'D'中,E,F,G分别是棱A'B',BB',B'C'上的中点.求证:平面EFG∥平面ACD

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知集合A=[0,1),B=[1,+∞),函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-{x}^{2},x∈A}\\{2{x}^{2}-x+a,x∈B}\end{array}\right.$,若对任意x0∈A,都有f(f(x0))∈B,则实数a的取值范围是(  )
A.[-1,2)B.[-1,+∞)C.[0,+∞)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ln(x+1)-ax.
(Ⅰ)当a=1时,求函数f(x)的最大值;
(Ⅱ)设函数g(x)=(x+1)f(x)+a(2x2+3x),若对任意x≥0都有g(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x2-3x-10<0},B={x|m+1<x<1-3m},且A∪B=B,则m的取值范围是m≤-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;       
(Ⅱ)求数列{an•2n}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.幂函数f(x)=xα在[0,+∞)上的增函数,则α的取值范围是(  )
A.(-∞,0)B.(-1,0)C.(0,1)D.(0,+∞)

查看答案和解析>>

同步练习册答案