精英家教网 > 高中数学 > 题目详情
10.曲线y=$\frac{1}{3}$x3在点(1,$\frac{1}{3}$)处的切线与直线x+y-3=0的夹角为(  )
A.30°B.45°C.60°D.90°

分析 求出函数的导数,求得切线的斜率,由已知直线的斜率,可得两直线垂直,可得夹角.

解答 解:y=$\frac{1}{3}$x3的导数为y′=x2
y=$\frac{1}{3}$x3在点(1,$\frac{1}{3}$)处的切线斜率为k=1,
直线x+y-3=0的斜率为-1,
则有切线和直线x+y-3=0垂直,
则所求夹角为90°.
故选D.

点评 本题考查导数的运用:求切线斜率,主要考查导数的几何意义,以及直线夹角的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在Rt△ABC中,∠C=90°,当n>2时,有cn>an+bn成立,请你类比直角三角形的这个性质,猜想一下空间四面体的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且3Sn=4an-4
(1)求数列{an}的通项公式
(2)设cn=log2a1+log2a2+…+log2an,Tn=$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个不共线的单位向量,夹角为$\frac{2}{3}$π.
(1)若向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,求$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值;
(2)若向量$\overrightarrow{a}$+t$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{3}$,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.
(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不重合的直线m、l和平面α、β,且m⊥α,l?β.给出下列命题,其中正确命题的个数是(  )
①若α∥β,则m⊥l;
②若α⊥β,则m∥l;
③若m⊥l,则α∥β;
④若m∥l,则α⊥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式x2-x-2≥0和x2-(2a+1)x+a2+a>0的解集分别为A和B,且A⊆B,则实数a取值范围是(  )
A.(0,1)B.[0,1]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知偶函数f(x)在[0,+∞)单调递减,若f(x-1)>f(2),则x的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y∈R+,满足$\frac{4}{x}$-$\frac{1}{y}$=1,不等式(x-y)a+2a2-3≥0恒成立,则实数a的取值范围是(-∞,-$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案