精英家教网 > 高中数学 > 题目详情
已知双曲线的左右焦点分别为F1,F2,在左支上过F1的弦AB的长为8,若实轴长为12,则△ABF2的周长是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由双曲线方程求得a=4,由双曲线的定义可得 AF2+BF2 =22,△ABF2的周长是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,计算可得答案.
解答: 解:由题意可得2a=12,由双曲线的定义可得 
AF2-AF1=2a,BF2 -BF1=2a,∴AF2+BF2 -AB=4a=24,即AF2+BF2 -8=16,AF2+BF2 =24.
△ABF2(F2为右焦点)的周长是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=24+8=32.
故答案为32.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出AF2+BF2 =22 是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设非空集合S={x|m≤x≤l},满足:当x∈S时,有x2∈S,给出如下四个命题:
①若m=1,则S={1};
②若l=1,则m的取值集合为[-1,1];
③若m=-
1
3
,则l的取值集合为[
1
9
,1].
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,AB=4,BC=3,点P在平面ABC外,且PD⊥平面ABCD,PD=
9
5
,求点P到直线AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

使
1-cosα
1+cosα
=
cosα-1
sinα
成立的α范围(  )
A、{x|2kπ-π<α<2kπ,k∈Z}
B、{x|2kπ-π≤α≤2kπ,k∈Z}
C、{x|2kπ+π<α<2kπ+
2
,k∈Z}
D、只能是第三或第四象限的角

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
3xy2
xy-1
xy
•(xy)-1

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x3+
1
x
的图象关于
 
对称(原点或y轴).

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式0<log2(-b+2)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-2x-1,g(x)=x2-2x-1(x∈[-2,4]).
(1)求f(x),g(x)的单调区间.
(2)求f(x),g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上. 若平面AEC⊥平面PBC,求E点位置.

查看答案和解析>>

同步练习册答案