精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x∈R,使(m+1)(x2+1)≤0,命题q:?x∈R,x2+mx+1>0.若p∧q为真命题,则实数m的取值范围为-2<m≤-1.

分析 若p∧q为真命题,则命题p,q全为真命题,进而可得实数m的取值范围.

解答 解:若p∧q为真命题,则命题p,q全为真命题,
若命题p:?x∈R,使(m+1)(x2+1)≤0,
则m+1≤0,解得:m≤-1,
若命题q:?x∈R,x2+mx+1>0,
则△=m2-4<0,
解得:-2<m<2,
综上可得:-2<m≤-1,
故答案为:-2<m≤-1

点评 本题以命题的真假判断与应用为载体,考查了复合命题,全称命题,特称命题等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)<1,f(0)=11,则不等式f(x)>$\frac{{e}^{x}+10}{{e}^{x}}$(其中e为自然对数的底数)的解集为(  )
A.(10,+∞)B.(-∞,0)∪(11,+∞)C.(-∞,11)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2-2lnx.
(Ⅰ)若f(x)在x=e处取得极值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的单调区间;
(Ⅲ) 设a>$\frac{1}{{e}^{2}}$,g(x)=-5+ln$\frac{x}{a}$,?x1,x2∈(0,e],使得|f(x1)-g(x2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=2${\;}^{-{x^2}+ax-1}}$在[-1,1]上是增函数,则a的取值范围是{a|a≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(I)将T表示为X的函数;
(II)根据直方图求利润T不少于57 000元的频率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值 (例如:若需求量X∈[100,110),则取X=105),估计T的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\sqrt{-{x}^{2}+1}$的定义域是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是偶函数,且在(0,+∞)上是增函数,又f(5)=0,则使f(x)>0的x的取值范围是(  )
A.-5<x<0或x>5B.x<-5或x>5C.-5<x<5D.x<-5或0<x<5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.集合A={x|-3<x<7},B={x|t+1<x<2t-1},若B⊆A,则实数t的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.图中的阴影表示的集合中是(  )
A.A∩∁UBB.B∩∁UAC.U(A∩B)D.U(A∪B)

查看答案和解析>>

同步练习册答案