精英家教网 > 高中数学 > 题目详情
12.在数列{an}中,有an+an+1+an+2(n∈N)为定值,且a1+a2015+a2016=3,则此数列的前2016项和S2016=2016.

分析 an+an+1+an+2(n∈N)为定值,且a1+a2015+a2016=3,可得a2014+a2015+a2016=3,a2014=a1.进而得到:a1+a2+a3=a4+a5+a6=…=a2014+a2015+a2016=3,即可得出.

解答 解:∵an+an+1+an+2(n∈N)为定值,且a1+a2015+a2016=3,
∴a2014+a2015+a2016=3,
∴a2014=a1
∴a1+a2+a3=a4+a5+a6=…=a2014+a2015+a2016=3,
∴此数列的前2016项和S2016=672(a2014+a2015+a2016)=672×3=2016,
故答案为:2016.

点评 本题考查了数列递推关系与数列求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若¬p∧q为真命题,则(  )
A.p为真命题,q为假命题B.p为假命题,q为假命题
C.p为真命题,q为真命题D.p为假命题,q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知{an}是公比为q的等比数列,a1=1,a1+a2=$\frac{5}{3}$.
(Ⅰ)当q=$\frac{2}{3}$;
(Ⅱ)在a1和an+1之间插入n个数,其中n=1,2,3,…,使这n+2个数成等差数列.记插入的n个数的和为Sn,求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知平行四边形ABCD,顶点A(1,1),B(4,3),C(1,-1).
(1)求D点的坐标;
(2)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在二项式(x-1)4033的展开式中,系数最小的项是第2017项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b,c∈R,c≠0,n∈N*,下列使用类比推理恰当的是(  )
A.“若a•5=b•5,则a=b”类比推出“若a•0=b•0,则a=b”
B.“(ab)n=anbn”类比推出“(a+b)n=an+bn
C.“(a+b)•c=ac+bc”类比推出“(a•b)•c=ac•bc”
D.“(a+b)•c=ac+bc”类比推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{b}{c}$”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|.
(1)若a=2,解不等式:f(x)≥3-|x-1|;
(2)若f(x)+|x+1|的最小值为4,且m+2n=a(m>0,n>0),求m2+4n2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x∈(0,π),任取一个x值使得cos(π-x)$>-\frac{1}{2}$的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)={log_2}\frac{1}{2-3x}$的定义域为$(-∞,\frac{2}{3})$.

查看答案和解析>>

同步练习册答案