精英家教网 > 高中数学 > 题目详情
11.变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x-2y≤0\\ x+y≥3\end{array}\right.$,则x2+y2的取值范围是(  )
A.[0,9]B.[5,+∞)C.$[\frac{{3\sqrt{2}}}{2},+∞)$D.$[\frac{9}{2},+∞)$

分析 作平面区域,且x2+y2的几何意义是点(0,0)与点(x,y)的两点的距离的平方,从而利用数形结合求解.

解答 解:作约束条件$\left\{\begin{array}{l}x≥0\\ x-2y≤0\\ x+y≥3\end{array}\right.$的平面区域如下,
x2+y2的几何意义是点(0,0)与点P(x,y)的两点的距离的平方,
且大圆的半径为3,小圆的半径为0,d=$\frac{3}{\sqrt{2}}$
故$\frac{9}{2}$≤x2+y2
故选:D.

点评 本题考查了线性规划的应用及数形结合的思想应用,关键在于明确x2+y2的几何意义是点(0,0)与点(x,y)的两点的距离的平方,从而化为圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的偶函数,且在区间(0,+∞)上单调递减,若实数a满足f(log2$\frac{1}{a}$)<f(-$\frac{1}{2}$),则a的取值范围是(0,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF=1.
(1)求椭圆的方程;
(2)求证:直线AC,BD的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={y|y=-x2+2x+3,x∈R},B={y|y=5x2-10x+3,x∈R},则A∩B=(  )
A.[-2,4]B.(-2,4]C.[-2,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任一点,F1,F2为椭圆的左右焦点,短轴的两个顶点与右焦点的连线构成等边三角形.
(I)求椭圆的离心率;
(Ⅱ)直线l:y=kx+$\frac{b}{2}$与圆:x2+y2=$\frac{{b}^{2}}{5}$相切,且与椭圆交于P、Q两点,当△OPQ的面积等于$\sqrt{7}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于任意实数a,b,c,有以下命题:
①“a=b”是“ac=bc”的充要条件;
②“a+5是无理数”是“a是无理数”的充要条件;
③“(x-a)(x-b)=0”是“x=a”的充分条件;
④“a<5”是“a<3”的必要条件.
其中正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从1,2,3,4,5这五个数字中任取三个不同的数字,求下列事件的概率.
(1)A={三个数字中不含1和5}
(2)B={三个数字中含1或5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{lgx}{x}$的导数是(  )
A.$\frac{1-ln10•lgx}{{{x^2}•ln10}}$B.$\frac{1+ln10•lnx}{{{x^2}•ln10}}$
C.$\frac{1+ln10•lgx}{x•ln10}$D.$\frac{1-ln10•lgx}{x•ln10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC中,∠A=90°,AC=2,D为边BC的中点,则$\overrightarrow{AD}•\overrightarrow{AC}$=2.

查看答案和解析>>

同步练习册答案