精英家教网 > 高中数学 > 题目详情
O为坐标原点,F为抛物线C:y2=4
2
x的焦点,P为C上一点,若|PF|=4
2
,则△POF的面积为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线方程,算出焦点F坐标,设P(m,n),由抛物线的定义结合|PF|算出m,从而得到n,得到△POF的边OF上的高等于2
6
,最后根据三角形面积公式即可算出△POF的面积.
解答: 解:∵抛物线C的方程为y2=4
2
x
∴2p=4
2
,可得
p
2
=
2
,得焦点F(
2
,0)
设P(m,n)
根据抛物线的定义,得|PF|=m+
p
2
=4
2

即m+
2
=4
2
,解得m=3
2

∵点P在抛物线C上,得n2=4
2
×3
2
=24
∴n=±2
6

∵|OF|=
2

∴△POF的面积为S=
1
2
|OF|×|n|=2
3

故答案为:2
3
点评:本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所满足的条件是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

分别用辗转相除法和更相减损术求282与470的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x+4a,(x<0)
f(log
1
2
x),(x≥0)
,若f(4)>1,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项为正的等比数列{an}中,a7与a11是函数f(x)=x2-6x+8的零点,则log2a3-log
1
2
a15=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正六边形的对角线的条数是
 
,正n边形的对角线的条数是
 
(对角线指不相邻顶点的连线段).

查看答案和解析>>

科目:高中数学 来源: 题型:

满足线性约束条件
5x+3y≤15
y≤x+1
x-5y≥3
的目标函数z=3x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知任意角θ以x轴的正半轴为始边,若终边经过点P(x0,y0)且|OP|=r(r>0).定义:sicosθ=
y0-x0
r
称“sicosθ”为“正余弦函数”,对于“正余弦函数”y=sicosx,有同学得到以下性质:
(1)该函数的值域[-
2
2
];
(2)该函数为奇函数,图象关于原点对称;
(3)该函数为非奇非偶函数,图象关于直线x=
4
对称;
(4)该函数为周期函数,且最小正周期为2π;
(5)该函数的单调递增区间为[2kπ-
π
4
,2kπ+
4
],k∈Z.
你认为这些性质正确的是
 
(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),则命题p:“f(-2)≠f(2)”是命题q:“y=f(x)不是偶函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:x+y-3=0分别与函数y=3x和y=log3x的交点为A(x1,y1)、B(x2,y2),则2(y1+y2)=(  )
A、4B、6C、8D、不确定

查看答案和解析>>

同步练习册答案