精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A、B、C的对边分别为a,b,c,若a=$\sqrt{6}$,b=2,B=45°,tanA•tanC>1,则角C的大小为75°.

分析 由条件利用正弦定理求得sinA的值,可得A的值,再利用三角形内角和公式求得C的值.

解答 解:△ABC中,∵a=$\sqrt{6}$,b=2,B=45°,tanA•tanC>1,
∴A、C都是锐角,由正弦定理可得$\frac{2}{sinB}$=$\frac{2}{\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{6}}{sinA}$,∴sinA=$\frac{\sqrt{3}}{2}$,∴A=60°.
故C=180°-A-B=75°,
故答案为:75°.

点评 本题主要考查正弦定理,三角形内角和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.等差数列{an}是非常数列,a4=10且a3,a6,a10成等比数列,
(1)求数列{an}的通项公式,
(2)若${b_n}={2^n}{a_n}$,求数列{bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.记复数z的共轭复数为$\overline{z}$,若$\overline{z}$(1-i)=2i(i为虚数单位),则复数z的模|z|=(  )
A.$\sqrt{2}$B.1C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{3}$)+sin2x
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f($\frac{A}{2}$)=$\sqrt{2}$,a=2,b=$\sqrt{6}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sin(π-α)=$\frac{1}{3}$,且$\frac{π}{2}$≤α≤π,则cosα=(  )
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.-$\frac{4\sqrt{2}}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句“攻破楼兰”是“返回家乡”的(  )
A.充要条件B.既不充分也不必要条件
C.充分条件D.必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,若在双曲线上存在点P使△OPF2是以O为顶点的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-{b}^{2}}$,其中c为双曲线的半焦距,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的三个顶点的坐标为A(0,1),B(1,0),C(0,-2),O为坐标原点,动点M满足|$\overrightarrow{CM}$|=1,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是(  )
A.$\sqrt{2}+1$B.$\sqrt{7}+1$C.$\sqrt{2}$-1D.$\sqrt{7}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某大学高等数学老师这学期分别用A、B两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图如图:
(1)学校规定:成绩不得低于85分的为优秀,请填写如表的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班乙班合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(k2≥k)0.150.100.050.0250.100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

同步练习册答案