分析 (1)求出P点坐标,根据P的位置列方程或不等式得出答案;
(2)令$\overrightarrow{OP}=\overrightarrow{AB}$列方程组,根据方程组是否有解得出结论.
解答 解:(1)$\overrightarrow{OP}$=$\overrightarrow{OA}+t\overrightarrow{AB}$=(1,2)+t(3,3)=(3t+1,3t+2),
∴P(3t+1,3t+2),
若P在x轴上,则3t+2=0,即t=-$\frac{2}{3}$;
若P在y轴上,则3t+1=0,即t=-$\frac{1}{3}$;
若P在第二象限内,则$\left\{\begin{array}{l}{3t+1<0}\\{3t+2>0}\end{array}\right.$,解得-$\frac{2}{3}<$t<-$\frac{1}{3}$.
(2)假设四边形OABP为平行四边形,则$\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{OP}$,
∴$\overrightarrow{OP}$=$\overrightarrow{OB}-\overrightarrow{OA}$=$\overrightarrow{AB}$=(3,3),
∴$\left\{\begin{array}{l}{3t+1=3}\\{3t+2=3}\end{array}\right.$,不等式组无解,
∴四边形OABP是不可能为平行四边形.
点评 本题考查了平面向量的坐标运算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{5}{2}$ | C. | 16 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a-\overrightarrow b=\overrightarrow 0$ | B. | ${\overrightarrow a^2}={\overrightarrow b^2}$ | C. | $\overrightarrow a•\overrightarrow b=1$ | D. | $\overrightarrow a•\overrightarrow b=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com