精英家教网 > 高中数学 > 题目详情
20.如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC∩BD=G.
(Ⅰ)求证:AE∥平面BFD;
(Ⅱ)求三棱锥C-BGF的体积.

分析 (Ⅰ)依题意可知:G是AC中点,CE⊥BF,F是AC中点,由此能证明AE∥平面BFD.
(Ⅱ) 法一:三棱锥C-BGF的体积VC-BFG=VG-BCF,由此能求出果.
法二:三棱锥C-BGF的体积${V_{C-BFG}}=\frac{1}{4}{V_{C-ABE}}=\frac{1}{4}•{V_{A-BCE}}$,由此能求出果.

解答 证明:(Ⅰ)∵矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,
F为CE上的点,且BF⊥平面ACE,AC∩BD=G,
∴依题意可知:G是AC中点.
∵BF⊥平面ACE,则CE⊥BF,
而BC=BE.∴F是AC中点.
在△AEC中,FG∥AE,∴AE∥平面BFD.
解:(Ⅱ) 解法一:∵矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,
F为CE上的点,且BF⊥平面ACE,AC∩BD=G.
∴三棱锥C-BGF的体积${V_{C-BFG}}={V_{G-BCF}}=\frac{1}{3}•{S_{△CFB}}•FG=\frac{1}{3}$.
解法二:∵矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,
F为CE上的点,且BF⊥平面ACE,AC∩BD=G.
∴三棱锥C-BGF的体积${V_{C-BFG}}=\frac{1}{4}{V_{C-ABE}}=\frac{1}{4}•{V_{A-BCE}}=\frac{1}{4}•\frac{1}{3}•\frac{1}{2}•BC•BE•AE=\frac{1}{3}$.

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{m}$-y2=1(m>0)的实轴长为6,则m等于(  )
A.3B.6C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:?x∈R,x2+1>0,则¬p为(  )
A.?x∈R,x2+1>0B.?x0∈R,x${\;}_{0}^{2}$+1≤0
C.?x0∈R,x${\;}_{0}^{2}$+1<0D.?x0∈R,x${\;}_{0}^{2}$+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点O(0,0),A(1,2),B(4,5),$\overrightarrow{OP}$=$\overrightarrow{OA}$+t$\overrightarrow{AB}$(t∈R).
(1)分别要使点P在x轴上、y轴上、第二象限内,求t的值或取值范围;
(2)四边形OABP是否有可能为平行四边形?如可能,求出相应的t值;如果不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},则使函数f(x)=xa为奇函数且在(x,+∞)上单调递减的a的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,等腰梯形ABCD的点C,D为半圆上的动点,CD∥AB,底边AB为圆O的直径,∠BOC=θ,OB=1.设等腰梯形ABCD的周长为y.
(Ⅰ)请写出y与θ之间的函数关系;
(Ⅱ)当θ取何值时,等腰梯形ABCD的周长最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别为内角A,B,C所对的边长,已知a=1,b=2,cosC=$\frac{1}{4}$.
(1)求△ABC的周长;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,则E(ξ)等于(  )
A.$\frac{3}{5}$B.$\frac{8}{15}$C.$\frac{14}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若3a=2b,则$\frac{2si{n}^{2}B-si{n}^{2}A}{si{n}^{2}A}$的值为$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案