| A. | $\frac{3}{5}$ | B. | $\frac{8}{15}$ | C. | $\frac{14}{15}$ | D. | 1 |
分析 根据超几何分布的概率公式计算各种可能的概率,得出数学期望.
解答 解:ξ的可能取值为0,1,2,
P(ξ=0)=$\frac{{C}_{7}^{2}}{{C}_{10}^{2}}$=$\frac{7}{15}$,P(ξ=1)=$\frac{{{C}_{3}^{1}C}_{7}^{1}}{{C}_{10}^{2}}$=$\frac{7}{15}$,P(ξ=2)=$\frac{{C}_{3}^{2}}{{C}_{10}^{2}}$=$\frac{1}{15}$.
∴E(ξ)=0×$\frac{7}{15}$+1×$\frac{7}{15}$+2×$\frac{1}{15}$=$\frac{3}{5}$.
故选:A.
点评 本题考查了离散型随机变量的分布列与数学期望,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a-\overrightarrow b=\overrightarrow 0$ | B. | ${\overrightarrow a^2}={\overrightarrow b^2}$ | C. | $\overrightarrow a•\overrightarrow b=1$ | D. | $\overrightarrow a•\overrightarrow b=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${2^{0.3}}<{log_2}0.3<{2^{0.8}}$ | B. | 20.3<20.8<log20.3 | ||
| C. | ${log_2}0.3<{2^{0.8}}<{2^{0.3}}$ | D. | ${log_2}0.3<{2^{0.3}}<{2^{0.8}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com