精英家教网 > 高中数学 > 题目详情
6.如图,在矩形ABCD中,AB=$\sqrt{3}$,BC=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{3}$,则($\overrightarrow{DF}$-$\overrightarrow{AD}$)•$\overrightarrow{FE}$的值是1+$\sqrt{3}$.

分析 以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立直角坐标系,可得A(0,0),B($\sqrt{3}$,0),D(0,2),E($\sqrt{3}$,1),设F(t,2),运用向量的数量积的坐标表示,可得t=1,再由向量的加减运算,计算即可得到所求值.

解答 解:以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立直角坐标系,
可得A(0,0),B($\sqrt{3}$,0),D(0,2),E($\sqrt{3}$,1),设F(t,2),
由$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{3}$,可得$\sqrt{3}$t=$\sqrt{3}$,解得t=1,
即F(1,2),$\overrightarrow{DF}$=(1,0),$\overrightarrow{AD}$=(0,2),$\overrightarrow{FE}$=($\sqrt{3}$-1,-1),
则($\overrightarrow{DF}$-$\overrightarrow{AD}$)•$\overrightarrow{FE}$=(1,-2)•($\sqrt{3}$-1,-1)
=$\sqrt{3}$-1+2=1+$\sqrt{3}$.
故答案为:1+$\sqrt{3}$.

点评 本题考查向量的数量积的运算,注意运用坐标表示,考查向量的加减运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在区间(-3,3)内任取一个整数x,取得2cos(πx+$\frac{π}{3}$)=1的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知各项均为正数的数列{an}前n项和为Sn,若${S_1}=2{,_{\;}}3{S_n}^2-2{a_{n+1}}{S_n}=a_{n+1}^2$,则an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b,c∈R,则“a>0且b2-4ac<0”是“?x∈R,都有ax2+bx+c≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|-1≤x<2},B={x|1<x<4},则A∪B可表示为(  )
A.[-1,4)B.(-1,4)C.[-1,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义数列如下:a1=2,an+1=an2-an+1,n∈N*
求证:(1)对于n∈N*恒有an+1>an成立;
(2)1-$\frac{1}{{2}^{2016}}$<$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知M=a+$\frac{1}{a-1}$(a>1),N=3${\;}^{1-{x}^{2}}$(x∈R),则M,N的大小关系为(  )
A.M≥NB.M>NC.M<ND.M≤N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等比数列{an}中,
(1)a4=2,a7=8,求an
(2)a2+a5=18,a3+a6=9,an=1,求n.

查看答案和解析>>

同步练习册答案