【题目】已知函数![]()
(1)求函数
的极值;
(2)当
时,过原点分别做曲线
与
的切线
,
,若两切线的斜率互为倒数,求证:
.
【答案】(1)函数
有极大值
,无极小值.(2)![]()
【解析】试题分析:
(1)对函数求导
,
①若
时,
在
无极大值和极小值
②若
,函数
有极大值
,无极小值.
(2) 设出切线方程,构造函数
,分段讨论函数的性质可得
.
试题解析:
解:(1)![]()
①若
时,
![]()
所以函数
在
单调递增,故无极大值和极小值
②若
,由
得
,
所以
.函数
单调递增,
,函数
单调递减
故函数
有极大值
,无极小值.
(2)设切线
的方程为
,切点为
,则
,
,所以
,
,则
.
由题意知,切线
的斜率为
,
的方程为
.
设
与曲线
的切点为
,则
,
所以
,
.
又因为
,消去
和
后,整理得![]()
令
,则
,
所以
在
上单调递减,在
上单调递增.
又
为
的一个零点,所以
①若
,因为
,
,所以
,
因为![]()
所以
,所以
.
②若
,因为
在
上单调递增,且
,则
,
所以
(舍去).
综上可知,![]()
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线l与圆
相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
(1)求cosB的值;
(2)边a,b,c成等比数列,求sinAsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an},其前n项和Sn满足6Sn=an2+3an+2,且a1 , a2 , a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn , n∈N*,求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是( )
A. y与x具有正的线性相关关系
B. 若给变量x一个值,由回归直线方程
=0.85x-85.71得到一个
,则
为该统计量中的估计值
C. 若该大学某女生身高增加1 cm,则其体重约增加0.85 kg
D. 若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com