精英家教网 > 高中数学 > 题目详情
已知M是椭圆
x2
9
+
y2
5
=1
上一点,F1,F2是椭圆的两个焦点,I是△MF1F2的内心,延长MI交F1F2于N,则
|MI|
|NI|
等于______.
如图,连接IF1,IF2.在△MF1I中,F1I是∠MF1N的角平分线,
根据三角形内角平分线性质定理,
|MI|
|NI|
=
|MF1|
|F1N|
,同理可得
|MI|
|NI|
=
|MF2|
|F2N|

|MI|
|NI|
=
|MF1|
|F1N|
=
|MF2|
|F2N|

根据等比定理
|MI|
|NI|
=
|MF1|+|MF2|
|F1N|+|F2N|
=
2a
2c
=
2×3
9-5
=
3
2

故答案为:
3
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若线段AB的中点坐标为(1,-1),则椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:y=kx+2(k为常数)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥
4
5
5
,则椭圆离心率e的取值范围是(  )
A.(0,
5
5
]
B.(0,
2
5
5
]
C.(0,
3
5
5
]
D.(0,
4
5
5
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2手11•浙江)设F1,F2分别为椭圆
x2
3
+y2=1的焦点,点A,B在椭圆上,若
F1A
=5
F2B
;则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)与过A(2,0),B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(1)求椭圆方程;
(2)设F1、F2分别为椭圆的左、右焦点,M为线段AF2的中点,求tan∠ATM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A、B、C分别为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的顶点和焦点,若∠ABC=90°,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
16
+
y2
9
=1的左、右焦点分别为F1、F2,过点F1的直线交椭圆于M、N两点,则△MNF2的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
100
+
y2
36
=1
的焦距等于(  )
A.20B.16C.12D.8

查看答案和解析>>

同步练习册答案