精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,S7=49,5是a1和a5的等差中项.
(1)求an与Sn
(2)证明:当n≥2时,有
1
S1
+
1
S2
+…+
1
Sn
7
4
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知列式求出等差数列的首项和公差,代入等差数列的通项公式和前n项和得答案;
(2)由
1
n2
1
(n-1)n
把数列的项放大,然后利用裂项相消法求和,再放缩得答案.
解答: (1)解:设等差数列{an}的公差为d,
由S7=49,5是a1和a5的等差中项,得
7a1+
7×6d
2
=49
a1+a1+4d=10
,解得:
a1=1
d=2

∴an=1+2(n-1)=2n-1,Sn=n+
2n(n-1)
2
=n2

(2)证明:
1
S1
+
1
S2
+…+
1
Sn
=
1
12
+
1
22
+
1
32
+…+
1
n2

当n=2时,
1
S1
+
1
S2
=1+
1
4
=
5
4
7
4

当n≥3时,
1
S1
+
1
S2
+…+
1
Sn
=
1
12
+
1
22
+
1
32
+…+
1
n2

5
4
+
1
2×3
+
1
3×4
+…+
1
(n-1)n
=
5
4
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n-1
-
1
n

=
7
4
-
1
n
7
4
点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设无穷数列{an},如果存在常数A,对于任意给定的正数?(无论多小),总存在正整数N,使得n>N时,恒有|an-A|<?成立,就称数列{an}的极限为A,则四个无穷数列:
①{(-1)n×2};
②{
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
};
③{1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
};
④{1×2+2×22+3×23+…+n×2n},
其极限为2共有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+2x-a)ex,g(x)=
1
2
f(lnx),其中a∈R,e=2.71828…为自然对数的底数.
(Ⅰ)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;
(Ⅱ)若f(x)在[-1,1]上为单调递增函数,求实数a的取值范围.
(Ⅲ)当a=0时,对于满足0<x1<x2的两个实数x1,x2,若存在x0>0,使得g′(x0)=
g(x1)-g(x2)
x1-x2
成立,试比较x0与x1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,若AB=1,AC=3,
AB
AC
=
3
2
,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα和tanβ是一元二次方程3x2+5x-2=0的两根根,且0°<α<90°,90°<β<180°,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
5
1
(|2-x|+|sinx|)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+bx+4满足f(1)=f(5).
①求常数b的值;
②求f(x)的最小值及相应x的取值;
③若f(x)>-4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,S1=2,当n≥2时,Sn=3Sn-1则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:
x
2
3
π
5
3
π
f(x)010-10
(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[-
π
2
π
3
]上的值域;
(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+
π
3
)=1,b+c=4,a=
7
,求△ABC的面积.

查看答案和解析>>

同步练习册答案