精英家教网 > 高中数学 > 题目详情
3.函数f(x)是奇函数,且对于任意的x∈R都有f(x+2)=f(x),若f(0.5)=-1,则f(7.5)=(  )
A.-1B.0C.0.5D.1

分析 由题意可得函数f(x)是周期为2的周期函数,结合已知条件和奇偶性可得.

解答 解:∵函数f(x)对任意的x∈R都有f(x+2)=f(x),
∴函数f(x)是周期为2的周期函数,
又∵f(x)是奇函数且f(0.5)=-1,
∴f(7.5)=f(7.5-8)=f(-0.5)=-f(0.5)=1,
故选:D.

点评 本题考查函数的周期性和奇偶性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线l:x+y=1与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0).
(1)若a=$\frac{1}{2}$,求l与C相交所得的弦长;
(2)若l与C有两个不同的交点,求双曲线C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)
(I)求出f(-1),f(2.5)的值;
(Ⅱ)若函数f(x)在区间[-2,2]的最大值与最小值分别为m,n,且m-n=3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\frac{1}{1+x}$,g(x)=x2+2,则f[g(2)]=(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为响应工业园区举行的万人体质监测活动,某高校招募了N名志愿服务者,将所有志愿者按年龄情况分为25~30,30~35,35~40,45~50,50~55六个层次,其频率分布直方图如图所示,已知35~45之间的志愿者共20人.
(1)计算N的值;
(2)从45~55之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取2名担任后勤保障工作,求恰好抽到1名女教师,1名男教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某篮球选手近五场比赛的上场时间分别为:9.7,9.9,10.1,10.2,10.1(单位:分钟),则这组数据的方差为0.044.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.请观察数列:1,1,2,3,5,(  ),13…运用合情推理,括号里的数最可能是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1(x∈R)
(1)求f(x)的单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为b、a、c,若f(A)=$\frac{1}{2}$,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,b,a,c成等差数列,求角A及a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.F1,F2是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的两个焦点,M是椭圆上一点,若MF1⊥MF2,则点M的横坐标为±$\frac{5\sqrt{7}}{4}$.

查看答案和解析>>

同步练习册答案