【题目】已知 m、n 是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是( )
A.若α⊥β , β⊥γ ,则α∥γ
B.若
,
, m∥n ,则α∥β
C.若 m、n 是异面直线,
, m∥β ,
, n∥α ,则α∥β
D.平面α内有不共线的三点到平面 β的距离相等,则α∥β
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减,②存在常数
,使其值域为
,则称函数
是函数
的“渐近函数”.
(1)判断函数
是不是函数
的“渐近函数”,说明理由;
(2)求证:函数
不是函数
的“渐近函数”;
(3)若函数
,
,求证:当且仅当
时,
是
的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块三角形边角地,如图
,
,
,
.(单位为百米).欲利用这块地修一个三角形形状的草坪(图中
)供市民休闲,其中点
在边
上,点
在边
上,沿
的三边修建休闲长廊,规划部门要求
的面积占
面积的一半,设
(百米),
的周长为
(百米)
![]()
(1)求出
函数的解析式及定义域
(2)求出休闲长廊总长度
的取值范围,并确定当
取到最大值时点
,
的位置
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)存在实数
使
;
(2)直线
是函数
图象的一条对称轴;
(3)
(
)的值域是
;
(4)若
,
都是第一象限角,且
,则
.
其中正确命题的序号为( )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和
满足
.
(1)求数列
的通项公式;
(2)记
,
是数列
的前
项和,若对任意的
,不等式
都成立,求实数
的取值范围;
(3)记
,是否存在互不相等的正整数
,
,
,使
,
,
成等差数列,且
,
,
成等比数列?如果存在,求出所有符合条件的
,
,
;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在常数 k(k∈N * , k≥2)、d、t( d , t∈R),使得无穷数列 {a n }满足a n +1
,则称数列{an }为“段差比数列”,其中常数 k、d、t 分别叫做段长、段差、段比.设数列 {bn }为“段差比数列”.
(1)已知 {bn }的首项、段长、段差、段比分别为1、 2 、 d 、 t .若 {bn }是等比数列,求 d 、 t 的值;
(2)已知 {bn }的首项、段长、段差、段比分别为1、3 、3 、1,其前 3n 项和为 S3n .若不等式 S3n≤ λ 3n1对 n ∈ N *恒成立,求实数 λ 的取值范围;
(3)是否存在首项为 b,段差为 d(d ≠ 0 )的“段差比数列” {bn },对任意正整数 n 都有 bn+6 = bn ,若存在, 写出所有满足条件的 {bn }的段长 k 和段比 t 组成的有序数组 (k, t );若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
![]()
经济损失 4000元以下 | 经济损失 4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有
以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.
附:临界值表
![]()
参考公式:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则![]()
②若
,
,
,则![]()
③若
,
,则![]()
④若
,
,则![]()
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com