精英家教网 > 高中数学 > 题目详情
7.已知等比数列{an}满足2(a3+a4)=2-a1-a2,则数列{an}前6项和的最小值为$\sqrt{3}$.

分析 设等比数列{an}的公比为q,前n项和为Sn.由2(a3+a4)=2-a1-a2,可得S2=$\frac{2}{2{q}^{2}+1}$.则数列{an}前6项和=S2(1+q2+q4)=$\frac{2{q}^{4}+2{q}^{2}+2}{2{q}^{2}+1}$,化简利用基本不等式的性质即可得出.

解答 解:设等比数列{an}的公比为q,前n项和为Sn
∵2(a3+a4)=2-a1-a2
∴2q2S2=2-S2,∴S2=$\frac{2}{2{q}^{2}+1}$.
则数列{an}前6项和S6=S2(1+q2+q4)=$\frac{2{q}^{4}+2{q}^{2}+2}{2{q}^{2}+1}$=$\frac{1}{2}$$(2{q}^{2}+1+\frac{3}{2{q}^{2}+1})$≥$\frac{1}{2}×2\sqrt{(2{q}^{2}+1)×\frac{3}{2{q}^{2}+1}}$=$\sqrt{3}$,当且仅当q2=$\frac{\sqrt{3}-1}{2}$时取等号.
故答案为:$\sqrt{3}$.

点评 本题考查了等比数列的通项公式及其前n项和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上横坐标为3的点,且P到抛物线焦点F的距离等于4.
(1)求抛物线的方程;
(2)过抛物线的焦点F作互相垂直的两条直线l1,l2,l1与抛物线交于A、B两点,l2与抛物线交于C、D两点,M、N分别是线段AB、CD的中点,求△FMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=7,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“互联网+”时代,全民阅读的内涵已经多元化,倡导读书成为一种生活方式,某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆C的中心在坐标原点O,焦点在x轴上,离心率为$\frac{1}{2}$,以椭圆的四个顶点为顶点的四边形的面积为28$\sqrt{3}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三个函数:①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其图象能将圆O:x2+y2=1的面积等分的函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在空间中,已知直线a、b和平面α、β满足a?α,b?β,α∥β,则直线a、b的位置关系是平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sin(ωx+$\frac{π}{3}$)的周期为π,则ω=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,cosx>1,则¬p是(  )
A.?x∈R,cosx<1B.?x∈R,cosx<1C.?x∈R,cosx≤1D.?x∈R,cosx≤1

查看答案和解析>>

同步练习册答案