精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是减函数,则a的取值范围是[$\frac{1}{2}$,1).

分析 若函数f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是减函数,故每一段上函数均为减函数,且a>f(1),利用导数法,可得a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是减函数,
∴0<a<1,
当x≥1时,f′(x)=1+lnx-2ax≤0,2a≥$\frac{1+lnx}{x}$,
设h(x)=$\frac{1+lnx}{x}$,则h′(x)=$\frac{-lnx}{x^2}$=0,解得:x=1,
故h(x)在x=1处取得最大值1,
故2a≥1,即a≥$\frac{1}{2}$,
又a>f(1)=-a,
故a∈[$\frac{1}{2}$,1).
故答案为:[$\frac{1}{2}$,1)

点评 本题考查的知识点是分段函数的应用,正确理解分段函数单调性的意义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且btanA,ctanB,btanB成等差数列,则角A的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{4}+{a}_{6}}{{b}_{3}+{b}_{7}}$=(  )
A.$\frac{2}{3}$B.$\frac{14}{9}$C.$\frac{9}{14}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若(ax+y)7的展开式中xy6的系数为1,则a=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{3x+1}{2-x}$的值域是{y|y≠-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).
已知男、女生成绩的平均值相同.
(1)求a的值;
(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设p:关于x的方程x2-4x+2a=0在区间[0,5]上有两相异实根;q:“至少存在一个实数x∈[1,2],使不等式x2+2ax+2-a>0成立”.若“¬p∧q”为真命题,参数a的取值范围为(-3,0)∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l过点P(3,4)且与直线2x-y-5=0垂直,则直线l的方程为x+2y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若tanα=2,则cos2α-sin2α的值为(  )
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案