精英家教网 > 高中数学 > 题目详情

【题目】有甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下2×2列联表:(单位:人).

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人成绩是优秀的概率为
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望. 附:K2=

P(K2≥k)

0.15

0.10

0.05

0.010

k

2.072

2.706

3.841

6.635

【答案】
(1)解:由已知,两个班的优秀学生人数为105× =30,填写2×2列联表如下;

优秀

非优秀

总计

甲班

10

45

55

乙班

20

30

50

总计

30

75

105

计算K2= = = ≈6.109>3.841,

所以有95%的把握认为“成绩与班级有关系”


(2)解:根据题意,X的所有可能取值为0,1,2,3;

计算P(X=0)= = =

P(X=1)= = =

P(X=2)= = =

P(X=3)= =

∴随机变量X的分布列为:

X

0

1

2

3


【解析】(1)由已知填写列联表,计算观测值,对照临界值即可得出结论;(2)根据题意知X的所有可能值,计算对应的概率,写出随机变量X的分布列,计算数学期望值.

P

数学期望为E(X)=0× +1× +2× +3× =
或X服从超几何分布,且N=10,M=6,n=3,
所以E(X)= = =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如甲图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙图所示的四棱锥D1﹣ABCE.
(Ⅰ)求证:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax3﹣xlnx,若x1、x2∈(0,+∞)且x1≠x2 , 不等式(x12﹣x22)(f(x1)﹣f(x2))>0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,|φ|< )的图象在 y轴左侧的第一个最高点为(﹣ ,3),第﹣个最低点为(﹣ ,m),则函数f(x)的解析式为(
A.f(x)=3sin( ﹣2x)
B.f(x)=3sin(2x﹣
C.f(x)=3sin( ﹣2x)
D.f(x)=3sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|
(1)若函数f(x)的值域为[2,+∞),求实数a的值
(2)若f(2﹣a)≥f(2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆O1:(x+a)2+y2=4,圆O2:(x﹣a)2+y2=4,其中常数a>2,点P是圆O1 , O2外一点.
(1)若a=3,P(﹣1,4),过点P作斜率为k的直线l与圆O1相交,求实数k的取值范围;
(2)过点P作O1 , O2的切线,切点分别为M1 , M2 , 记△PO1M1 , △PO2M2的面积分别为S1 , S2 , 若S1= S2 , 求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2cos (sin cos )+ (ω>0)在区间( ,π)上有且仅有一个零点,则实数ω的范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β都是锐角,且sinα= ,tan(α﹣β)=﹣
(1)求sin(α﹣β)的值;
(2)求cosβ的值.

查看答案和解析>>

同步练习册答案