精英家教网 > 高中数学 > 题目详情
16.如图A、B是单位圆O上的动点,C是圆与x轴正半轴的交点,设∠AOC=α.
(1)当点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$)时,求sinα的值;
(2)若0≤α≤$\frac{π}{2}$,且当点A、B在圆上沿逆时针方向移动时总有∠AOB=$\frac{π}{2}$,试求|BC|的取值范围.

分析 (1)利用任意角的三角函数的定义,求得sinα的值.
(2)由题意可得∠COB=α+$\frac{π}{3}$,由余弦定理求得 CB2 的解析式,利用余弦函数的定义域和值域求得BC2的范围,可得BC的范围.

解答 解:(1)∵A点的坐标为$(\frac{3}{5},\frac{4}{5})$,根据三角函数定义可知$x=\frac{3}{5}$,$y=\frac{4}{5}$,r=1,∴$sinα=\frac{y}{r}=\frac{4}{5}$.
(2)∵$∠AOB=\frac{π}{3}$,∠COA=α,∴∠COB=α+$\frac{π}{3}$,
由余弦定理得 CB2=OC2+OB2-2OC•OB•cos∠COB=1+1-2cos(α+$\frac{π}{3}$)=2-2cos(α+$\frac{π}{3}$).
∵α∈(0,$\frac{π}{2}$),∴α+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{6}$),∴cos(α+$\frac{π}{3}$)∈(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$],
∴BC2∈[1,2+$\sqrt{3}$]、∴BC∈[1,$\sqrt{2+\sqrt{3}}$],即 BC∈[1,$\frac{\sqrt{2}+\sqrt{6}}{2}$].

点评 本题主要考查任意角的三角函数的定义,余弦函数的定义域和值域,余弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos(2x+$\frac{π}{3}$),则下列说法正确的是(  )
A.函数f(x)=cos(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位长度可得到y=sin2x的图象
B.x=$\frac{π}{6}$是函数f(x)的一个对称轴
C.($\frac{π}{12}$,0)是函数f(x)的一个对称中心
D.函数f(x)=cos(2x+$\frac{π}{3}$)在[0,$\frac{π}{2}$]上的最小值为-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某劳动就业服务中心的7名志愿者准备安排6人在周六、周日两天在街头做劳动就业指导,若每天安排3人,则不同的安排方案共有140种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,则a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线E:y2=4x焦点为F,准线为l,P为l上任意点.过P作E的两条切线,切点分别为Q,R.
(1)若P在x轴上,求|QR|;
(2)求证:以PQ为直径的圆恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一组数据4.6,4.9,5.1,5.3,5.6,则该组数据的方差是0.116.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若存在两个正实数x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.(-∞,0)B.$({0,\frac{3}{2e}}]$C.$[{\frac{3}{2e},+∞})$D.$({-∞,0})∪[{\frac{3}{2e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(n)=cos($\frac{nπ}{2}$+$\frac{π}{4}$),则f(1)+f(2)+…+f(2015)等于(  )
A.$\sqrt{2}$B.$-\frac{{\sqrt{2}}}{2}$C.0D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(-2,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是(  )
A.3B.3+$\sqrt{2}$C.3-$\sqrt{2}$D.6

查看答案和解析>>

同步练习册答案