精英家教网 > 高中数学 > 题目详情
8.若存在两个正实数x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.(-∞,0)B.$({0,\frac{3}{2e}}]$C.$[{\frac{3}{2e},+∞})$D.$({-∞,0})∪[{\frac{3}{2e},+∞})$

分析 根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.

解答 解:由3x+a(2y-4ex)(lny-lnx)=0得3x+2a(y-2ex)ln$\frac{y}{x}$=0,
即3+2a($\frac{y}{x}$-2e)ln$\frac{y}{x}$=0,
即设t=$\frac{y}{x}$,则t>0,
则条件等价为3+2a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{3}{2a}$有解,
设g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$为增函数,
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴当t>e时,g′(t)>0,
当0<t<e时,g′(t)<0,
即当t=e时,函数g(t)取得极小值为:g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{3}{2a}$有解,
则-$\frac{3}{2a}$≥-e,即$\frac{3}{2a}$≤e,
则a<0或a≥$\frac{3}{2e}$,
故选:D.

点评 本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=4且$\overrightarrow a$•$\overrightarrow b$=2,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.y=log2xB.$y=-\sqrt{x}$C.$y={(\frac{1}{2})^x}$D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图A、B是单位圆O上的动点,C是圆与x轴正半轴的交点,设∠AOC=α.
(1)当点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$)时,求sinα的值;
(2)若0≤α≤$\frac{π}{2}$,且当点A、B在圆上沿逆时针方向移动时总有∠AOB=$\frac{π}{2}$,试求|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和大于10的概率是$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,$\sqrt{3}$(tanB+tanC)=tanBtanC-1,则sin2A=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)+x是奇函数,且f(2)=1,则f(-2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x=lnπ,y=log${\;}_{\frac{2}{3}}}$2,z=e${\;}^{-\frac{1}{2}}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2-b2-c2+$\sqrt{3}$bc=0.则角A的大小为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案