精英家教网 > 高中数学 > 题目详情
17.已知x=lnπ,y=log${\;}_{\frac{2}{3}}}$2,z=e${\;}^{-\frac{1}{2}}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

分析 利用对数函数的单调性与性质以及指数函数的单调性与性质,推出x,y,z的范围,即可比较大小,得到答案.

解答 解:x=lnπ>1,y=log${\;}_{\frac{2}{3}}}$2<0,0<z=e${\;}^{-\frac{1}{2}}}$=$\frac{1}{\sqrt{e}}$<1,
∴y<z<x.
故选:D.

点评 本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某劳动就业服务中心的7名志愿者准备安排6人在周六、周日两天在街头做劳动就业指导,若每天安排3人,则不同的安排方案共有140种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若存在两个正实数x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.(-∞,0)B.$({0,\frac{3}{2e}}]$C.$[{\frac{3}{2e},+∞})$D.$({-∞,0})∪[{\frac{3}{2e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(n)=cos($\frac{nπ}{2}$+$\frac{π}{4}$),则f(1)+f(2)+…+f(2015)等于(  )
A.$\sqrt{2}$B.$-\frac{{\sqrt{2}}}{2}$C.0D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“?x∈R,2x2-3x+9<0”的否定是?x∈R,2x2-3x+9≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4,5,6},若A∪B={1,2,3,4,5},A∩B={3,4,5},则∁UA不可能是(  )
A.{1,2,6}B.{2,6}C.{6}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x+2}{x}$.
(Ⅰ)写出函数f(x)的定义域和值域;
(Ⅱ)证明函数f(x)在(0,+∞)为单调递减函数;
(Ⅲ)试判断函数g(x)=(x-2)f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(-2,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是(  )
A.3B.3+$\sqrt{2}$C.3-$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.f(x)是奇函数,且满足f(x+4)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)的值为-0.5.

查看答案和解析>>

同步练习册答案