分析 (1)由P(-1,0),设直线PQ方程,代入抛物线方程,由△=0,求得直线的斜率,代入方程求得切点分别为Q,R坐标,即可求得求|QR|;
(2)由对称性可知:该点必在x轴上,设M(m,0),设Q($\frac{1}{4}$${y}_{0}^{2}$,y0),P(-1,t),则切线为yy0=2x+$\frac{1}{2}$${y}_{0}^{2}$,求得t=$\frac{1}{2}$y0-$\frac{2}{{y}_{0}}$,根据$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,即可求得m的值.
解答 解:(1)由已知可知:抛物线y2=4x焦点为F(1,0),
∴P(-1,0),
设PQ:y=k(x+1),
∴$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=k(x+1)}\end{array}\right.$,整理得:k2x2+(2k2-4)x+k2=0,①
由△=0,即(2k2-4)2-4•k2•k2=0,
解得:k=±1,
代入①求得x=1,y=±2,
∴切点分别为Q和R坐标为(1,±2),
∴|QR|=4;
(2)证明:由对称性可知:该点必在x轴上,设M(m,0),
设Q($\frac{1}{4}$${y}_{0}^{2}$,y0),P(-1,t),则切线为yy0=2x+$\frac{1}{2}$${y}_{0}^{2}$,
∴t=$\frac{1}{2}$y0-$\frac{2}{{y}_{0}}$,
由题意可知:$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,即(m-$\frac{1}{4}$${y}_{0}^{2}$)(m+1)+y0•($\frac{1}{2}$y0-$\frac{2}{{y}_{0}}$)=0,
整理得:(m2+m-2)+$\frac{1}{4}$${y}_{0}^{2}$(1-m)=0
∴m=1,
∴恒过点M(1,0).
点评 本题考查椭圆的性质,考查直线与椭圆的位置关系,向量数量积的坐标表示,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y-4=0 | B. | x-y+4=0 | C. | 2x+y-6=0 | D. | x+2y-6=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=log2x | B. | $y=-\sqrt{x}$ | C. | $y={(\frac{1}{2})^x}$ | D. | $y=\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com