精英家教网 > 高中数学 > 题目详情
7.计算$\underset{lim}{△x→0}$$\frac{sin(\frac{π}{6}+△x)-sin\frac{π}{6}}{△x}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 利用导数的定义,即可求解.

解答 解:设f(x)=sinx,f′(x)=cosx,
则$\underset{lim}{△x→0}$$\frac{sin(\frac{π}{6}+△x)-sin\frac{π}{6}}{△x}$=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,
故选B.

点评 本题考查导数的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.《孙子算经》是中国公元四世纪的数学著作,其中接受了求解依次同余式的方法,他是数论中一个重要的定理,又称《中国剩余定理》,如图所示的程序框图的算法就是源于《中国剩余定理》,执行该程序框图,若正整数N除以正整数m后的余数为n,则记为N≡n(modm),例如11≡3(mod4),则输出的等于(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我们学习的高中数学文科教材体系分为必修系列和选修系列,其中必修系列包括必修1,必修2,必修3,必修4,必修5五本教材;选修系列分为选修系列一(必选系列)和选修系列四(自选系列),其中选修系列一包括选修1-1,选修1-2两本教材;选修系列四包括选修4-4,选修4-5两本教材,根据上面的描述,画出我们学习的高中数学文科教材体系的结构图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2,f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量$\overrightarrow{ON}=λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}$.若|$\overrightarrow{MN}$|≤k恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(1)设函数f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)已知函数g(x)=lnx的反函数为h(x),函数F(x)=[h(x)]a-x,(a≠0),点C(x1,F(x1))、D(x2,F(x2)),记直线CD的斜率为μ,若x1-x2<0,问:是否存在x0∈(x1,x2),使F′(x0)>μ成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,已知A(0,2),B(-2,0),P是曲线$x=\sqrt{1-{y^2}}$上的一个动点,则$\overrightarrow{BA}•\overrightarrow{BP}$的最大值为4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为(  )
A.3.119B.3.126C.3.132D.3.151

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈[1,3],x2≤a”为真命题的一个充分不必要条件是(  )
A.a≤9B.a≥9C.a≤10D.a≥10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=$\left\{\begin{array}{l}{a^x},(x>1)\\(4-\frac{a}{2})x+2,(x≤1)\end{array}$在R上的单调递增,则实数a∈(  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

同步练习册答案