精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|-2≤x≤4},B={x|a-2≤x≤2a},若A∩B=B,则a得取值范围为(  )
A.[0,2]B.(-∞,-2]C.(-∞,-2)∪[0,2]D.(-∞,-2]∪[0,2]

分析 根据A与B的交集为B,得到B为A的子集,即可确定出a的范围

解答 解:∵A∩B=B,
∴B⊆A.
又集合A={x|-2≤x≤4},B={x|a-2≤x≤2a},
当B=∅时,即2a<a-2时,即a<-2时,满足A∩B=B,
当B≠∅时,则$\left\{\begin{array}{l}{a-2≤2a}\\{a-2≥-2}\\{2a≤4}\end{array}\right.$,
解得0≤a≤2,
综上所述实数a的取值范围是(-∞,-2)∪[0,2].
故选:C.

点评 本题考实数的取值范围的求法,是基础题,解题时要认真审题,注意集合交集的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x-y+a=0,M(-2,0),N(-1,0),动点Q满足$\frac{|QM|}{|QN|}$=$\sqrt{2}$,动点Q的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l与曲线C交于不同的两点A,B,且满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(其中O为坐标原点),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y=x的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图:在屋内墙角处堆放米(米堆为一个圆锥的四分之一),米堆底部的弧长为4米,高为2米,则该米堆的体积为$\frac{32}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能为等比数列?若可能,求出此等比数列的通项公式;若不可能,说明理由;
(2)设bn=(-1)n(an+n+2),Sn为数列{bn}的前n项和,且对于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(0,2,3),B(-2,1,6),C(1,-1,5)
(1)求平面ABC的一个法向量;
(2)证明:向量$\overrightarrow a=(3,-4,1)$与平面ABC平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知α是第三象限角,且$tanα=\frac{1}{3}$,求sinα,cosα的值.
(2)已知角α的终边上有一点P的坐标是(3a,4a),其中a≠0,求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.长为2$\sqrt{3}$的线段EF的端点E,F分别在直线y=$\frac{{\sqrt{3}}}{3}$x和y=-$\frac{{\sqrt{3}}}{3}$x上滑动,P是线段EF的中点.
(Ⅰ)求点P的轨迹M的方程;
(Ⅱ)设直线l:x=ky+m与轨迹M交于A,B两点,若以AB为直径的圆经过定点C(3,0)(C点与A,B点不重合),求证:直线l经过定点Q,并求出Q点的坐标.

查看答案和解析>>

同步练习册答案