分析 Cn6=Cn4,可得n=10.${(\sqrt{x}-\frac{1}{3x})^n}$=$(\sqrt{x}-\frac{1}{3x})^{10}$的展开式中,利用其通项公式即可得出.
解答 解:∵Cn6=Cn4,∴n=6+4=10.
${(\sqrt{x}-\frac{1}{3x})^n}$=$(\sqrt{x}-\frac{1}{3x})^{10}$的展开式中,通项公式Tr+1=${∁}_{10}^{r}$$(\sqrt{x})^{10-r}$$(-\frac{1}{3x})^{r}$=$(-\frac{1}{3})^{r}$${∁}_{10}^{r}$${x}^{5-\frac{3r}{2}}$,
令5-$\frac{3r}{2}$=2,解得r=2.
因此含x2的项是第3项.
故答案为:3.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 高一学生被抽到的概率最大 | B. | 高三学生被抽到的概率最大 | ||
| C. | 高三学生被抽到的概率最小 | D. | 每位学生被抽到的概率相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在纵坐标不变时,横坐标伸长到原来的2倍 | |
| B. | 在纵坐标不变时,横坐标缩短到原来的$\frac{1}{2}$倍 | |
| C. | 在横坐标不变时,纵坐标伸长到原来的2倍 | |
| D. | 在横坐标不变时,纵坐标缩短到原来的$\frac{1}{2}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com