精英家教网 > 高中数学 > 题目详情
17.已知函数y=x2的图象在点(x0,${x}_{0}^{2}$)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足($\sqrt{2}$,$\sqrt{3}$).

分析 求出函数y=x2的导数,y=lnx的导数,求出切线的斜率,切线的方程,可得2x0=$\frac{1}{m}$,lnm-1=-x02,再由零点存在定理,即可得到所求范围.

解答 解:函数y=x2的导数为y′=2x,
在点(x0,x02)处的切线的斜率为k=2x0
切线方程为y-x02=2x0(x-x0),
设切线与y=lnx相切的切点为(m,lnm),0<m<1,
即有y=lnx的导数为y′=$\frac{1}{x}$,
可得2x0=$\frac{1}{m}$,切线方程为y-lnm=$\frac{1}{m}$(x-m),
令x=0,可得y=lnm-1=-x02
由0<m<1,可得x0>$\frac{1}{2}$,且x02>1,
解得x0>1,
由m=$\frac{1}{2{x}_{0}}$,可得x02-ln(2x0)-1=0,
令f(x)=x2-ln(2x)-1,x>1,
f′(x)=2x-$\frac{1}{x}$>0,f(x)在x>1递增,
且f($\sqrt{2}$)=2-ln2$\sqrt{2}$-1<0,f($\sqrt{3}$)=3-ln2$\sqrt{3}$-1>0,
则有x02-ln(2x0)-1=0的根x0∈($\sqrt{2}$,$\sqrt{3}$).
故答案为:($\sqrt{2}$,$\sqrt{3}$).

点评 本题考查导数的运用:求切线的方程和单调区间,考查函数方程的转化思想,以及函数零点存在定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{1}{x}$+x2的单调区间为单调减区间为(-∞,0),(0,$\frac{\root{3}{4}}{2}$),单调增区间为[$\frac{\root{3}{4}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2|x|+cosx-π,则不等式(x-2)f(x)>0的解集是:(2,+∞)∪(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数g(x)=$\frac{a}{x+2}$在[1,2]上为减函数,则a的取值范围为(  )
A.(-∞,0)B.[0,+∞)C.(0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知α是第三象限的角,cos2α=-$\frac{4}{5}$,则tan(2α-$\frac{π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=lg$\frac{1+ax}{1-2x}$是区间(-b,b)上的奇函数(a,b∈R且a≠-2),则ab的取值范围是(  )
A.$({1,\sqrt{2}}]$B.$({0,\sqrt{2}}]$C.$({1,\sqrt{2}})$D.$({0,\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow a=(sinx,cosx)$,向量$\overrightarrow b=(\sqrt{3},-1)$,函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动$\frac{π}{6}$个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)是定义在区间(-∞,0)上的可导函数,其导函数为f′(x),且满足xf′(x)+f(x)<x,则不等式(x+2016)f(x+2016)+2f(-2)>0的解集为(  )
A.(x|-2014<x<0}B.(x|x<-2018}C.(x|x>-2016}D.(x|-2016<x<-2014}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知Cn6=Cn4,${(\sqrt{x}-\frac{1}{3x})^n}$的展开式中含x2的项是第3项.

查看答案和解析>>

同步练习册答案