精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow a=(sinx,cosx)$,向量$\overrightarrow b=(\sqrt{3},-1)$,函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动$\frac{π}{6}$个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.

分析 (1)利用两个向量的数量积的运算法则求得f(x)的解析式,再利用正弦函数的单调性,求得函数f(x)的单调递增区间.
(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得函数y=g(x)在区间[0,π]上的值域.

解答 解:(1)∵向量$\overrightarrow a=(sinx,cosx)$,向量$\overrightarrow b=(\sqrt{3},-1)$,
∴函数f(x)=$\overrightarrow a•\overrightarrow b$=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,
可得函数的增区间为[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.
(2)将函数y=f(x)的图象上所有点向右平行移动$\frac{π}{6}$个单位长度,
得函数y=g(x)=2sin(x-$\frac{π}{6}$-$\frac{π}{6}$)=2sin(x-$\frac{π}{3}$) 的图象,
∵x∈[0,π],∴x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴sin(x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],∴g(x)∈[$\sqrt{3}$,2],
即函数y=g(x)在区间[0,π]上的值域为[$\sqrt{3}$,2].

点评 本题主要考查两个向量的数量积的运算,正弦函数的单调性、函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求z=600x+300y的最大值,式中的x、y满足的约束条件.$\left\{\begin{array}{l}3x+y≤300\\ x+2y≤252\\ x≥0\\ y≥0\end{array}\right.$且x,y为整数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边经过点P(6,-8),点P到原点的距离为r=(  )
A.14B.±10C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=x2的图象在点(x0,${x}_{0}^{2}$)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数z=$\frac{2}{1-i}$,则复数z的模是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:mx2-ny2=1的一个焦点为F(-5,0).,实轴长为6,则双曲线C的渐近线方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的两根.
①求α+β的值.
②求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=sinx+ex在点(0,1)处的切线与坐标轴围成的三角形的面积为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知随机变量X~N(μ,σ2),且期概率密度函数在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72<X<88)=0.683,求:
(1)参数μ,σ的值;
(2)P(64<X≤72)

查看答案和解析>>

同步练习册答案