精英家教网 > 高中数学 > 题目详情
6.设函数f(x)是定义在区间(-∞,0)上的可导函数,其导函数为f′(x),且满足xf′(x)+f(x)<x,则不等式(x+2016)f(x+2016)+2f(-2)>0的解集为(  )
A.(x|-2014<x<0}B.(x|x<-2018}C.(x|x>-2016}D.(x|-2016<x<-2014}

分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论

解答 解:由f(x)+xf′(x)<x,x<0,
即[xf(x)]′<x<0,
令F(x)=xf(x),
则当x<0时,F'(x)<0,
即F(x)在(-∞,0)上是减函数,
F(x+2016)=(x+2016)f(x+2014),F(-2)=(-2)f(-2),
F(x+2016)-F(-2)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2014)>F(-2)得,
∴x+2016<-2,
即x<-2018.
故选B.

点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为$\frac{\sqrt{13}bc}{3}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=x2的图象在点(x0,${x}_{0}^{2}$)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:mx2-ny2=1的一个焦点为F(-5,0).,实轴长为6,则双曲线C的渐近线方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的两根.
①求α+β的值.
②求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.平面直角坐标系中,过原点的直线l与曲线y=ex交于不同的A,B两点,分别过点A,B作y轴的平行线与曲线y=$\sqrt{2}$lnx交于C,D两点,则直线CD的斜率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=sinx+ex在点(0,1)处的切线与坐标轴围成的三角形的面积为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,π).
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α+$\frac{π}{4}$)的值;
(2)设函数f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要得到函数y=2sin(2x+$\frac{π}{4}$)的图象,只需将函数y=2sin(x+$\frac{π}{4}$)的图象(  )
A.在纵坐标不变时,横坐标伸长到原来的2倍
B.在纵坐标不变时,横坐标缩短到原来的$\frac{1}{2}$倍
C.在横坐标不变时,纵坐标伸长到原来的2倍
D.在横坐标不变时,纵坐标缩短到原来的$\frac{1}{2}$倍

查看答案和解析>>

同步练习册答案