精英家教网 > 高中数学 > 题目详情

已知函数).
(1)求函数的最小正周期;
(2)若,求的值.

(1);(2)

解析试题分析:(1)先利用2倍角公式可求得,再利用两角和与差公式求得:;(2)先将代入可得,又利用和与差公式拆开可得:然后利用题中条件求解的值,再带入即可求解.
(1) ;
(2) *,,可求得,代入*式可求得.
考点:1三角函数和与差公式,2三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1).求的周期和单调递增区间;
(2).若关于x的方程上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)求函数的递增区间;
(3)当时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求的值;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元.

(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.

(1)求经过1 s 后,∠BOA的弧度;
(2)求质点A,B在单位圆上第一次相遇所用的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)求的最大值和最小正周期;
(3)若是第二象限的角,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.(1)求函数的值域;(2)求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案