分析 (1)利用抛物线上存在一点P到其焦点的距离为$\frac{3}{2}$,且点P在圆x2+y2=$\frac{9}{4}$上,求出p,可求抛物线E的方程;
(2)设直线l的方程为x=my+1,代入抛物线方程 得:y2-4my-4=0,利用$\overrightarrow{AF}$=3$\overrightarrow{BF}$,确定坐标之间的关系,求出m,即可求直线l的方程.
解答 解:(1)设P(x0,y0),则x0+$\frac{p}{2}$=$\frac{3}{2}$,∴x0=$\frac{3}{2}$-$\frac{p}{2}$(2分)
∵点P在圆x2+y2=$\frac{9}{4}$上,∴(3-p)2+4p(3-p)=9,解得:p=2
∴抛物线的方程为y2=4x.(4分)
(2)解:设直线l的方程为x=my+1
代入抛物线方程 得:y2-4my-4=0(6分)
设A(x1,y1),B(x2,y2),则y1+y2=4m,x1+x2=4m2+2
由$\overrightarrow{AF}$=3$\overrightarrow{BF}$,得:(1-x1,-y1)=3(x2-1,y2)
即1-x1=3(x2-1),-y1=3y2(8分)
∴x2=1-2m2,y2=-2m(10分)
∴4m2=4-8m2,解得:m=±$\frac{\sqrt{3}}{3}$,
∴直线l的方程为$\sqrt{3}$x±y-$\sqrt{3}$=0.(12分)
点评 本小题主要考查向量坐标的应用、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{5}{18}$ | C. | $\frac{2}{9}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,0) | B. | ($\frac{1}{2}$,0) | C. | (0,$\frac{1}{8}$) | D. | ($\frac{1}{8}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6种 | B. | 16种 | C. | 12种 | D. | 20种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a|0<a<4} | B. | {a|0≤a<4} | C. | {a|0<a≤4} | D. | {a|0≤a≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com