精英家教网 > 高中数学 > 题目详情
3.已知定义在(0,+∞)上的函数满足xf′(x)+(2-x)f(x)=$\frac{{e}^{x}}{x}$(x+lnx-1),则下列不等式一定正确的是(  )
A.4f(1)<$\sqrt{e}$f($\frac{1}{2}$)B.4f(2)<ef(1)C.4ef(2)>9f(3)D.e${\;}^{\frac{3}{2}}$f($\frac{1}{2}$)<16f(2)

分析 根据条件构造g(x)=$\frac{{x}^{2}f(x)}{{e}^{x}}$,求函数的导数,判断函数的单调性,利用函数的单调性进行求解即可.

解答 解:由xf′(x)+(2-x)f(x)=$\frac{{e}^{x}}{x}$(x+lnx-1),得$\frac{{x}^{2}f′(x)+(2x-{x}^{2})f(x)}{{e}^{x}}$=x+lnx-1,
设g(x)=$\frac{{x}^{2}f(x)}{{e}^{x}}$,则g′(x)=$\frac{[{x}^{2}f(x)]′{e}^{x}-[{x}^{2}f(x)]{e}^{x}}{{(e}^{x})^{2}}$=$\frac{2xf(x)+{x}^{2}f′(x)-{x}^{2}f(x)}{{e}^{x}}$=$\frac{{x}^{2}f′(x)+(2x-{x}^{2})f(x)}{{e}^{x}}$=x+lnx-1,
设h(x)=x+lnx-1,则h(x)在(0,+∞)上为增函数,且h(1)=0,
则当x>1时,h(x)>h(1)=0,此时g′(x)=h(x)>0,此时函数g(x)为增函数,
当0<x<1时,h(x)<h(1)=0,此时g′(x)=h(x)<0,此时函数g(x)为减函数,
由g(2)>g(1),
即$\frac{4f(2)}{{e}^{2}}$>$\frac{f(1)}{e}$,即4f(2)>ef(1),
由g(3)>g(2),得$\frac{9f(3)}{{e}^{3}}$>$\frac{4f(2)}{{e}^{2}}$,即4ef(2)<9f(3),
由g($\frac{1}{2}$)>g(1),
得$\frac{\frac{1}{4}f(\frac{1}{2})}{{e}^{\frac{1}{2}}}$>$\frac{f(1)}{e}$,即4f(1)<$\sqrt{e}$f($\frac{1}{2}$),
故选:A

点评 本题主要考查函数值的大小比较,根据条件构造函数,求函数的导数,利用函数的单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知cosα=$\frac{4}{5}$,α∈(-$\frac{π}{2}$,0),求cos(α-$\frac{π}{4}$);sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求方程lgx+(x-2)(x-4)=0的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合$A=\left\{{\left.x\right|y=ln({x-3})}\right\},B=\left\{{\left.x\right|y=\sqrt{x-2}}\right\}$,则(∁RA)∩B等于(  )
A.(2,3)B.(3,+∞)C.[2,3]D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:对?m∈[-1,1],不等式a2-5a-3≥$\sqrt{{m}^{2}+8}$;命题q:?x0,使不等式x${\;}_{0}^{2}$+ax0+2<0;若“p∧q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合M={-2,2},N={-2,0,2,4},则M∪N=(  )
A.{4}B.{-2,2}C.{0,4}D.{-2,0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知点D在BC上,且CD=2BD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$D.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a=50.5,b=logπ3,c=log2sin$\frac{3π}{5}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα•cosα<0,cotα•sinα>0,试确定角α是第几象限角.

查看答案和解析>>

同步练习册答案