精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前n项和为Sn,其中S4=-8,a3+a4=0.
(1)求此数列的通项公式an
(2)求此数列的前n项和公式Sn

分析 (1)利用a1+a2=S4-(a3+a4)及(a3+a4)-(a1+a2)=4d可知公差d=2,进而可得结论;
(2)通过(1)、利用等差数列的求和公式计算即得结论.

解答 解:(1)依题意,a1+a2=S4-(a3+a4)=-8,
∴(a3+a4)-(a1+a2)=4d=8,即d=2,
又∵a1+(a1+2)=-8,
∴a1=-5,
∴此数列的通项公式an=-5+2(n-1)=2n-7;
(2)由(1)知,Sn=$\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}(-5+2n-7)$=n2-6n.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)已知函数y=3cosx,x∈(-$\frac{π}{3}$,$\frac{4π}{3}$),求单调区间、最值及取得最值条件.
(2)已知-$\frac{\sqrt{3}}{2}$≤sinθ<$\frac{1}{2}$,求θ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在五面体ABC-DEF中,四边形BCFE是平行四边形.
(1)求证:CF∥AD;
(2)判断DF与BC是否平行?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=e•ex,e=2.71828…是自然对数的底.
(1)求曲线f(x)在点M(0,e)处的切线方程;
(2)设g(x)=f(x)-kx(k∈R),试探究函数g(x)的单调性;
(3)若f(x)>kx总成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,a4=-15,公差d=3,
(1)求a1的值;
(2)求S7的值;
(3)数列{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC中,角A,B,C所对应的边分别为a,b,c,面积为S.
(1)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$S,求A的值;
(2)若tanA:tanB:tanC=1:2:3,且c=1,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的极值为(  )
A.极大值为$\frac{4}{27}$,极小值为0B.极大值为0,极小值为$\frac{4}{27}$
C.极小值为-$\frac{4}{27}$,极大值为0D.极大值为-$\frac{4}{27}$,极小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,E为PD中点.
(1)求证:PB∥平面AEC;
(2)求证:平面PBC⊥平面PAB;
(3)设PA=1,AD=2,三棱锥P-ACD的体积V=$\frac{1}{3}$,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x1是x+lgx=27的解,x2是x+10x=27的解,则x1+x2的值是27.

查看答案和解析>>

同步练习册答案