精英家教网 > 高中数学 > 题目详情
5.曲线y=x3-lnx在点(1,2)处的切线方程为2x-y-2=0.

分析 欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.

解答 解:∵y=x3-lnx,∴y′=3x2-$\frac{1}{x}$.
∴x=1时,y′=2,y=0.
∴曲线y=f(x)在点(1,0)处的切线方程为y-0=2(x-1).
即2x-y-2=0.
故答案为:2x-y-2=0.

点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的定义域为(3-2a,a+1),且f(x-1)为偶函数,则实数a的值可以是(  )
A.$\frac{2}{3}$B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的奇函数f(x)和偶函数g(x)满足关系$f(x)-g(x)={(\frac{1}{3})^x}$,则f(1)<g(0).(从“>”,“<”,“=”中,选出适当的一种填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.房间里有4盏电灯,分别由4个开关控制,至少开1盏灯用以照明,则不同的照明方式为15种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:
(1)当a>1时,$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$;
(2)1,$\sqrt{2}$,3不可能是一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点M(x,5)、N(-2,y),点P(1,1)在直线MN上,且$|{\overrightarrow{MP}}|=2|{\overrightarrow{PN}}|$,求点M,N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项前Sn=-$\frac{1}{2}$n2+kn(其中k∈N+),且a1=$\frac{7}{2}$.
(1)求k的值;
(2)求数列{an}的通项公式;
(3)求数列{9+2an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于函数f(x)=2cos(2x+$\frac{π}{3}$)的性质,下列表述正确的是(1)、(2)、(4)、(5)
(1)是周期函数,且最小正周期是π;
(2)是轴对称图形,且对称轴是直线x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z;
(3)定义域为R,值域是[$\frac{1}{2}$,2];
(4)是中心对称图形,且对称中心是($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z;
(5)单调递减区间是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知空间点A(x,1,2)和点B(2,3,4),且|AB|=2$\sqrt{6}$,则点A的坐标为(6,1,2)或(-2,1,2).

查看答案和解析>>

同步练习册答案