分析 设出A,B,C的坐标,由$\overrightarrow{OC}$=cosα•$\overrightarrow{OA}$+sinα•$\overrightarrow{OB}$,把C的坐标用A,B的坐标表示,代入圆的方程,可得x1x2+y1y2=0,说明$\overrightarrow{OA}•\overrightarrow{OB}$=0,求得圆心O到直线y=kx+2的距离为$\frac{\sqrt{2}}{2}$.再由点到直线的距离公式列式求得k值.
解答 解:设A(x1,y1),B(x2,y2),C(x0,y0),
由$\overrightarrow{OC}$=cosα•$\overrightarrow{OA}$+sinα•$\overrightarrow{OB}$,
得(x0,y0)=cosα(x1,y1)+sinα(x2,y2)=(x1cosα+x2sinα,y1cosα+y2sinα),
∴$\left\{\begin{array}{l}{{x}_{0}={x}_{1}cosα+{x}_{2}sinα}\\{{y}_{0}={y}_{1}cosα+{y}_{2}sinα}\end{array}\right.$,
代入${{x}_{0}}^{2}+{{y}_{0}}^{2}=1$,得$({x}_{1}cosα+{x}_{2}sinα)^{2}+({y}_{1}cosα+{y}_{2}sinα)^{2}=1$.
整理得:sin2α(x1x2+y1y2)=0,
∵α为锐角,∴sin2α≠0,则x1x2+y1y2=0,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=0,则圆心O到直线y=kx+2的距离为$\frac{\sqrt{2}}{2}$.
由$\frac{|2|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}$,解得:k=$±\sqrt{7}$.
故答案为:$±\sqrt{7}$.
点评 本题考查平面向量的基本定理及其意义,考查了点到直线距离公式的应用,体现了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄段 | 外国传统节日 | 中国传统节日 | ||
| 获优惠劵的人数 | 占本组人数频率 | 获优惠券的人数 | 占本组人数频率 | |
| [10,20) | 30 | a | 30 | 0.5 |
| [20,30) | 48 | 0.8 | 36 | 0.6 |
| [30,40) | 36 | 0.6 | 48 | 0.8 |
| [40,50) | 20 | 0.5 | 24 | b |
| [50,60] | 4 | 0.2 | 16 | 0.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥n,n∥β,则l∥β | B. | 若α⊥β,n∥α,m∥β,则m⊥n | ||
| C. | 若α⊥β,β⊥γ,则α∥γ | D. | 若l⊥α,l⊥β,则α∥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com