【题目】已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.
(1)求点M的轨迹C的方程;
(2)过点G(0, )的动直线l与点的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1) (2)在y轴上存在定点Q(0,﹣1),使以AB为直径的圆恒过这个点.
【解析】试题分析:(1)由圆的方程求出F1、F2的坐标,结合题意可得点M的轨迹C为以F1,F2为焦点的椭圆,并求得a,c的值,再由隐含条件求得b,则椭圆方程可求;
(2)直线l的方程可设为 ,设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求出A,B横坐标的和与积,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,可得 ,即 .利用向量的坐标运算即可求得m值,即定点Q得坐标.
试题解析:
(1)由圆F1:(x﹣1)2+y2=8,得F1(1,0),则F2(﹣1,0),
由题意得 ,
∴点M的轨迹C为以F1,F2为焦点的椭圆,
∵
∴点M的轨迹C的方程为;
(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),
联立 可得9(1+2k2)x2+12kx﹣16=0.
则+= , = ,
假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,
则,即.
∵ ,
∴= + = +
∴ ,解得m=﹣1.
因此,在y轴上存在定点Q(0,﹣1),使以AB为直径的圆恒过这个点.
科目:高中数学 来源: 题型:
【题目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)设关于的一元二次方程 ()有两根和,且满足.
(1)试用表示;
(2)求证:数列是等比数列;
(3)当时,求数列的通项公式,并求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an+n(n∈N*).
(1)求证数列{an﹣1}是等比数列,并求数列{an}的通项公式;
(2)若bn=log2(﹣an+1),求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益与投资成正比,其关系如图1所示;投资股票等风险型产品B的收益与投资的算术平方根成正比,其关系如图2所示(收益与投资单位:万元).
(1)分别将A、B两种产品的收益表示为投资的函数关系式;
(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=ax2﹣(2a+1)x+a+1对于a∈[﹣1,1]时恒有f(x)<0,则实数x的取值范围是( )
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com