精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分13分)设关于的一元二次方程有两根,且满足

(1)试用表示

(2)求证:数列是等比数列;

(3)时,求数列的通项公式,并求数列的前项和

【答案】(1)(2)详见解析(3)

【解析】

试题分析:(1)由韦达定理可得代入已知关系式可得的关系式(2)由(1)中所得的的关系式根据等比数列的定义证为常数(3)根据等比数列的通项公式可先求得从而可得根据分组求和及错位相减法可求得数列的前项和

试题解析:解:(1)根据韦达定理,得

,故

(2)证明:

,则,从而

这时一元二次方程无实数根,故

所以,数列是公比为的等比数列.

(3)设,则数列是公比的等比数列,

所以

所以

则由错位相减法可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判断x=1能否为函数f(x)的极值点,并说明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定义在[1,t]上的函数g(x)=f(x)﹣ln(x+1)+x3在x=1处取得最大值,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过直线x+y﹣2=0和直线x﹣y+4=0的交点,且与直线3x﹣2y+4=0平行,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角A、B、C的对边分别为,已知向量且满足

(1)求角A的大小;

(2)试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为正数的等差数列,数列的前项和为.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若对任意正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.

(1)求点M的轨迹C的方程;

(2)过点G(0, )的动直线l与点的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案