精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A、B、C对应的三边长分别为a,b,c,且满足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范围.

分析 (Ⅰ)利用余弦定理表示出cosB,代入已知等式整理后再利用余弦定理表示求出cosA的值,即可确定出A的度数;
(Ⅱ)由a与sinA的值,利用正弦定理表示出b与c,代入b+c中,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的值域确定出范围即可.

解答 解:(Ⅰ)∵cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,c(acosB-$\frac{1}{2}$b)=a2-b2
∴a2+c2-b2-bc=2a2-2b2,即a2=b2+c2-bc,
∵a2=b2+c2-2bccosA,
∴cosA=$\frac{1}{2}$,
则A=$\frac{π}{3}$;
(Ⅱ)由正弦定理得$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2,
∴b=2sinB,c=2sinC,
∴b+c=2sinB+2sinC=2sinB+2sin(A+B)=2sinB+2sinAcosB+2cosAsinB
=3sinB+$\sqrt{3}$cosB=2$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),
∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
则b+c∈($\sqrt{3}$,2$\sqrt{3}$].

点评 此题考查了正弦、余弦定理,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,如果输入的a=log32,b=log52,c=log23,那么输出m的值是(  )
A.log52B.log32C.log23D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=ex-x2+b,曲线y=f(x)与直线y=ax+1相切于点(1,f(1))
(I)求a,b的值;
(Ⅱ)证明:当x>0时,[ex+(2-e)x-1](3+cosx)-4xsinx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=-$\frac{1-{2}^{x}}{lo{g}_{2}(x-1)}$的定义域为{x|x>1且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图,若输入$x=\frac{1}{2}$,则输出的结果S=(  )
A.$\sqrt{2}$B.$\frac{1}{4}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x0∈R,x02+2x0+1≤0,则¬p为(  )
A.?x0∈R,x02+2x0+1>0B.?x∈R,x2+2x+1≤0
C.?x∈R,x2+2x+1≥0D.?x∈R,x2+2x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{an},已知a2=2a1,且样本容量为300,则对应小长方形面积最小的一组的频数为(  )
A.20B.40C.30D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.小王参加网购后,快递员电话通知于本周五早上7:30-8:30送货到家,如果小王这一天离开家的时间为早上8:00-9:00,那么在他走之前拿到邮件的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{AC}$=k$\overrightarrow{a}$+$\overrightarrow{b}$,其中k∈R,且$|{\overrightarrow a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°对于以下结论:
①|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{3}$;
②若点D是边BC的中点,则$\overrightarrow{AD}$=$\frac{k+1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$);
③若∠A为直角,则k=$\frac{{5±\sqrt{21}}}{2}$;
④若∠A为钝角,则k<$\frac{{5-\sqrt{21}}}{2}$且k≠-1或k>$\frac{{5+\sqrt{21}}}{2}$;
⑤若∠A为锐角,则$\frac{{5-\sqrt{21}}}{2}$<k<$\frac{{5+\sqrt{21}}}{2}$.
其中所有正确命题的序号是①②③④⑤ (把你认为正确命题的序号都填上).

查看答案和解析>>

同步练习册答案