精英家教网 > 高中数学 > 题目详情
2.函数y=2+log${\;}_{\frac{1}{2}}$x(x≥1)的值域是(-∞,2].

分析 利用函数的定义域结合函数的解析式整理计算即可求得最终结果.

解答 解:由对数函数的性质可得:当x≥1时,${log}_{\frac{1}{2}}x≤0$,
则$y=2+{log}_{\frac{1}{2}}x≤2$,即函数的值域为(-∞,2].
故答案为:(-∞,2].

点评 本题考查了对数函数的性质,函数单调性的应用等,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“a2>4”是“a>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式为an=-n+t,数列{bn}的通项公式为bn=3n-3,设cn=$\frac{{a}_{n}+{b}_{n}}{2}$+$\frac{|{a}_{n}-{b}_{n}|}{2}$,在数列{cn}中,cn≥c3(n∈N+),则实数t的取值范围为$(\frac{10}{3},5)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3+ax2+bx+a2,在x=1时有极值10且a>0,那么a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$,则(x-3)n的二项式系数的和32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.作为重庆一中民主管理的实践之一,高三年级可以优先选择教学楼,为了调迁了解同学们的意愿,现随机调出了16名男生和14名女生,结果显示,男女生中分别有10人和5人意愿继续留在第一教学楼.
(1)根据以上数据完成以下2×2的列联表:
 留在第一教学楼不留在第一教学楼总计
男生10 16
女生5 14
总计  30
(2)根据列联表的独立性检验,能否有90%的把握认为性别与意愿留在第一教学楼有关?
(3)如果从意愿留在第一教学楼的女生中(其中恰有3人精通制作PPT),选取2名负责为第一教学楼各班图书角作一个总展示的PPT,用于楼道电子显示屏的宣传,那么选出的女生中至少有1人能胜任此工作的概率是多少?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k)0.400.250.100.010
k0.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=$\frac{1}{2}$x2+2xf′(2017)+2017lnx,则f′(2017)=-2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系中,A(1,2),B(3,6),则$\overrightarrow{AB}$=(  )
A.(2,-4)B.(-2,0)C.(0,0)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列结论:
(1)若f(x)是R上奇函数且满足f(x+2)=-f(x),则f(x)的图象关于x=1对称;
(2)若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a42-(a1+a32的值为-1;
(3)一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分概率为c,且a,b,c∈(0,1),若他投篮一次得分的数学期望为2,则$\frac{2}{a}+\frac{1}{3b}$的最小值为$\frac{16}{3}$;
其中正确结论的序号为(1)(3).

查看答案和解析>>

同步练习册答案