精英家教网 > 高中数学 > 题目详情
20.设a=sin17°cos45°+cos17°sin45°,b=2cos213°,c=$\frac{\sqrt{3}}{2}$,则有(  )
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

分析 利用两角和的正弦公式、诱导公式化简a、b的寒暑假解析式,再利用正弦函数的单调性,得出结论.

解答 解:∵a=sin17°cos45°+cos17°sin45°=sin(17°+45°)=sin62°,
b=2cos213°=2cos213°-1+1=cos26°+1=sin63°+1,c=$\frac{\sqrt{3}}{2}$=sin60°,
而函数y=sinx在( 0°,90°)上单调递增,∴b>a>c,
故选:C.

点评 本题主要考查两角和的正弦公式、诱导公式,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则圆的直角坐标方程为(x-1)2+(y-1)2=2,直线l和圆C的位置关系为相交(填相交、相切、相离).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A-BC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=x2的图象在点(x0,x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(  )
A.x0∈($\sqrt{2}$,$\sqrt{3}$)B.x0∈(1,$\sqrt{2}$)C.x0∈(0,$\frac{1}{2}$)D.x0∈($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x4-2x3,g(x)=-4x2+4x-2,x∈R.
(1)求f(x)的最小值;
(2)证明:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是(  )
A.k≥1B.k≥2C.k≥3D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项等差数列{an}的前n项和为Sn,且满足${a_1}+{a_5}=\frac{1}{3}a_3^2,{S_7}=56$.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{{3^{a_n}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是线段BC,PC的中点
(1)证明:AE⊥PD
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\sqrt{3}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知p:-1<x<0,q:m-1<x<m+1,若p是q的充分条件,则m的取值范围是[-1,0].

查看答案和解析>>

同步练习册答案