·ÖÎö °Ñ¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÖ±Ïßl1µÄ·½³Ì£¬ÓëC1µÄ·½³Ì×é³É·½³Ì×飬Çó³öµãM¡¢NµÄ×ø±ê£¬¼ÆËã|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|µÄÖµ¼´¿É£®
½â´ð ½â£º¡ßµãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬
¡àµãAÔÚÆ½ÃæÖ±½Ç×ø±êϵϵÄ×ø±êΪ£¨4£¬4£©£»
ÓÖÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪl£º¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=a£¬
¼´$\frac{\sqrt{2}}{2}$¦Ñcos¦È+$\frac{\sqrt{2}}{2}$¦Ñsin¦È=a£¬
»¯ÎªÆÕͨ·½³ÌΪ$\frac{\sqrt{2}}{2}$x+$\frac{\sqrt{2}}{2}$y=a£¬
ÇÒl¹ýµãA£¬
¡àa=$\frac{\sqrt{2}}{2}$¡Á4+$\frac{\sqrt{2}}{2}$¡Á4=4$\sqrt{2}$£¬
¡àÖ±ÏßlµÄ·½³ÌΪx+y=8£»
ÓÖÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
»¯ÎªÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
Éè¹ýB£¨-2£¬2£©ÓëÖ±ÏßlƽÐеÄÖ±Ïßl1µÄ·½³ÌΪ
x+y=k£¬
Ôòk=-2+2=0£¬
¡àl1µÄ·½³ÌΪ£ºx+y=0£¬
¡à$\left\{\begin{array}{l}{x+y=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=\sqrt{\frac{12}{7}}}\\{{y}_{1}=-\sqrt{\frac{12}{7}}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=-\sqrt{\frac{12}{7}}}\\{{y}_{2}=\sqrt{\frac{12}{7}}}\end{array}\right.$£¬
¼´M£¨$\sqrt{\frac{12}{7}}$£¬-$\sqrt{\frac{12}{7}}$£©¡¢N£¨-$\sqrt{\frac{12}{7}}$£¬$\sqrt{\frac{12}{7}}$£©£»
¡à|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|=$\sqrt{{£¨\sqrt{\frac{12}{7}}+2£©}^{2}{+£¨-\sqrt{\frac{12}{7}}-2£©}^{2}}$•$\sqrt{{£¨-\sqrt{\frac{12}{7}}+2£©}^{2}{+£¨\sqrt{\frac{12}{7}}-2£©}^{2}}$
=$\sqrt{2}$£¨$\sqrt{\frac{12}{7}}$+2£©•$\sqrt{2}$£¨2-$\sqrt{\frac{12}{7}}$£©
=2¡Á£¨4-$\frac{12}{7}$£©
=$\frac{32}{7}$£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˲ÎÊý·½³ÌÓë¼«×ø±ê·½³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¦Ë=$\frac{5}{4}$£¬¦Ì=$\frac{3}{4}$ | B£® | ¦Ë=$\frac{4}{3}$£¬¦Ì=$\frac{5}{6}$ | C£® | ¦Ë=$\frac{5}{3}$£¬¦Ì=$\frac{7}{6}$ | D£® | ¦Ë=$\frac{4}{3}$£¬¦Ì=$\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{a}{b}$ | B£® | $\frac{{a}^{2}}{b}$ | C£® | $\frac{b}{a}$ | D£® | $\frac{{b}^{2}}{a}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 483 | B£® | 482 | C£® | 481 | D£® | 480 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com