12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãA¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©Ö±ÏßlµÄ×ø±ê·½³ÌΪl£º¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=a£¬ÇÒl¹ýµãA£¬ÇúÏßC1µÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®¹ýB£¨-2£¬2£©ÓëÖ±ÏßlƽÐеÄÖ±Ïßl1ÓëÇúÏß½»ÓÚM¡¢NÁ½µã£¬Çó|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|µÄÖµ£®

·ÖÎö °Ñ¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÖ±Ïßl1µÄ·½³Ì£¬ÓëC1µÄ·½³Ì×é³É·½³Ì×飬Çó³öµãM¡¢NµÄ×ø±ê£¬¼ÆËã|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|µÄÖµ¼´¿É£®

½â´ð ½â£º¡ßµãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬
¡àµãAÔÚÆ½ÃæÖ±½Ç×ø±êϵϵÄ×ø±êΪ£¨4£¬4£©£»
ÓÖÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪl£º¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=a£¬
¼´$\frac{\sqrt{2}}{2}$¦Ñcos¦È+$\frac{\sqrt{2}}{2}$¦Ñsin¦È=a£¬
»¯ÎªÆÕͨ·½³ÌΪ$\frac{\sqrt{2}}{2}$x+$\frac{\sqrt{2}}{2}$y=a£¬
ÇÒl¹ýµãA£¬
¡àa=$\frac{\sqrt{2}}{2}$¡Á4+$\frac{\sqrt{2}}{2}$¡Á4=4$\sqrt{2}$£¬
¡àÖ±ÏßlµÄ·½³ÌΪx+y=8£»
ÓÖÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
»¯ÎªÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
Éè¹ýB£¨-2£¬2£©ÓëÖ±ÏßlƽÐеÄÖ±Ïßl1µÄ·½³ÌΪ
x+y=k£¬
Ôòk=-2+2=0£¬
¡àl1µÄ·½³ÌΪ£ºx+y=0£¬
¡à$\left\{\begin{array}{l}{x+y=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=\sqrt{\frac{12}{7}}}\\{{y}_{1}=-\sqrt{\frac{12}{7}}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=-\sqrt{\frac{12}{7}}}\\{{y}_{2}=\sqrt{\frac{12}{7}}}\end{array}\right.$£¬
¼´M£¨$\sqrt{\frac{12}{7}}$£¬-$\sqrt{\frac{12}{7}}$£©¡¢N£¨-$\sqrt{\frac{12}{7}}$£¬$\sqrt{\frac{12}{7}}$£©£»
¡à|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|=$\sqrt{{£¨\sqrt{\frac{12}{7}}+2£©}^{2}{+£¨-\sqrt{\frac{12}{7}}-2£©}^{2}}$•$\sqrt{{£¨-\sqrt{\frac{12}{7}}+2£©}^{2}{+£¨\sqrt{\frac{12}{7}}-2£©}^{2}}$
=$\sqrt{2}$£¨$\sqrt{\frac{12}{7}}$+2£©•$\sqrt{2}$£¨2-$\sqrt{\frac{12}{7}}$£©
=2¡Á£¨4-$\frac{12}{7}$£©
=$\frac{32}{7}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˲ÎÊý·½³ÌÓë¼«×ø±ê·½³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÍÖÔ²$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1ÉÏÒ»µãµ½×ó½¹µãµÄ¾àÀëÊÇ4£¬ÔòËüµ½ÍÖÔ²µÄÓÒ×¼ÏߵľàÀëÊÇ$\frac{15}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Çóº¯Êýy=tan£¨x-$\frac{¦Ð}{4}$£©µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¼¯ºÏA={x|x2-x-6£¼0}ÓëB{x|0£¼x-m£¼9}£¬ÇÒA¡ÈB=B£¬ÔòʵÊýmµÄȡֵ·¶Î§ÓÃÇø¼ä±íʾΪ[-6£¬-2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ¡÷ABCÖУ¬AB=1£¬AC=2£¬¡ÏA=120¡ã£¬µãOÊÇ¡÷ABCµÄÍâÐÄ£¬´æÔÚʵÊý¦Ë£¬¦Ì£¬Ê¹$\overrightarrow{AO}$=¦Ë$\overrightarrow{AB}$+¦Ì$\overrightarrow{AC}$£¬Ôò£¨¡¡¡¡£©
A£®¦Ë=$\frac{5}{4}$£¬¦Ì=$\frac{3}{4}$B£®¦Ë=$\frac{4}{3}$£¬¦Ì=$\frac{5}{6}$C£®¦Ë=$\frac{5}{3}$£¬¦Ì=$\frac{7}{6}$D£®¦Ë=$\frac{4}{3}$£¬¦Ì=$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªa+b=4£¨b£¾0£©£¬µ±a=x0ʱ£¬$\frac{1}{|a|}$+$\frac{|4a|}{b}$È¡µÃ×îСֵy0£¬ÔòµãP£¨x0£¬y0£©µÄ×ø±êΪ£¨-$\frac{4}{3}$£¬$\frac{7}{4}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®×öÒ»¸öÔ²ÖùÐιøÂ¯£¬ÈÝ»ýΪV£¬Á½¸öµ×ÃæµÄ²ÄÁÏÿµ¥Î»Ãæ»ýµÄ¼Û¸ñΪaÔª£¬²àÃæµÄ²ÄÁÏÿµ¥Î»Ãæ»ýµÄ¼Û¸ñΪbÔª£¬µ±Ôì¼Û×îµÍʱ£¬¹øÂ¯µÄ¸ßÓëµ×ÃæÖ±¾¶µÄ±ÈΪ£¨¡¡¡¡£©
A£®$\frac{a}{b}$B£®$\frac{{a}^{2}}{b}$C£®$\frac{b}{a}$D£®$\frac{{b}^{2}}{a}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2x+3}{3x}$£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨${\frac{1}{a_n}}$£©£¬n¡ÊN*£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÁîTn=a1a2-a2a3+a3a4-a4a5+¡­-a2na2n+1£¬ÇóÂú×ãTn¡Ü-60µÄ×îСÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®´Ó±àºÅ001£¬002£¬¡­£¬500¸ö²úÆ·ÖÐÓÃϵͳ³éÑùµÄ·½·¨³éȡһ¸öÑù±¾£¬ÒÑÖªÑù±¾±àºÅ´ÓСµ½´óÒÀ´ÎΪ007£¬032£¬¡­£¬ÔòÑù±¾ÖÐ×î´óµÄ±àºÅÓ¦¸ÃΪ£¨¡¡¡¡£©
A£®483B£®482C£®481D£®480

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸