分析 $\frac{1}{|a|}$+$\frac{|4a|}{b}$转化为$\frac{a}{4|a|}$+$\frac{b}{4|a|}$+$\frac{|4a|}{b}$,再利用基本不等式,得到取的最小值的等号成立的条件,解得即可.
解答 解:∵a+b=4(b>0),
∴$\frac{1}{|a|}$+$\frac{|4a|}{b}$=$\frac{a+b}{4|a|}$+$\frac{4|a|}{b}$=$\frac{a}{4|a|}$+$\frac{b}{4|a|}$+$\frac{|4a|}{b}$≥$\frac{a}{4|a|}$+2,当且仅当$\frac{b}{4|a|}$=$\frac{|4a|}{b}$取等号,
即$\left\{\begin{array}{l}{a+b=4}\\{{b}^{2}=16{a}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{4}{5}}\\{b=\frac{16}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-\frac{4}{3}}\\{b=\frac{16}{3}}\end{array}\right.$,
当a=$\frac{4}{5}$时,$\frac{1}{|a|}$+$\frac{|4a|}{b}$最小值为$\frac{9}{4}$,
当a=-$\frac{4}{3}$时,$\frac{1}{|a|}$+$\frac{|4a|}{b}$最小值为$\frac{7}{4}$,
综上所述,当a=x0=-$\frac{4}{3}$时,$\frac{1}{|a|}$+$\frac{|4a|}{b}$取得最小值y0=$\frac{7}{4}$.
∴则点P(x0,y0)的坐标为(-$\frac{4}{3}$,$\frac{7}{4}$),
故答案为:(-$\frac{4}{3}$,$\frac{7}{4}$),
点评 本题考查了基本不等式的应用,关键是等号成立的条件,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | ±$\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com