【题目】已知圆C:.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P向该圆引一条切线,切点为M,O为坐标原点,且有,
求使得取得最小值的点P的坐标
【答案】(1)x+y+1=0或x+y-3=0;(2)点P的坐标为.
【解析】
本题考查用点斜式、斜截式求直线方程的方法,体现了分类讨论的数学思想,点到直线的距离公式,判断P在直线2x-4y+3=0上,|PM|的最小值就是|PO|的最小值,时间诶体的关键.
(1)当截距不为零时:设切线方程为,根据圆心到切线的距离等于半径求出a的值,即得切线方程,当截距等于零时:设切线方程为y=kx(k≠0),同理可得k=2±,从而得到圆的所有的切线方程.
(2)有切线的性质可得|PM|2=|PC|2-|CM|2,又|PM|=|PO|,可得2x0-4y0+3=0.动点P在直线2x-4y+3=0上,|PM|的最小值就是|PO|的最小值,过点O作直线2x-4y+3=0的垂线,垂足为P,垂足坐标即为所求.
(1)切线在两坐标轴上的截距相等且截距不为零,
设切线方程为,()
又圆C:,圆心C到切线的距离等于圆的半
径,
则所求切线的方程为:。
(2)切线PM与半径CM垂直,
动点P的轨迹是直线,的最小值就是的最小
值,而的最小值为O到直线的距离d=,
所求点坐标为P.
科目:高中数学 来源: 题型:
【题目】公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
其中 x 是仪器的月产量.
(1)将利润表示为月产量 的函数;
(2)当月产量 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线y=kx+b与抛物线C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,过弦AB中点M作平行于x轴的直线交抛物线于点D,求△ABD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中是实数.
(l)若 ,求函数的单调区间;
(2)当时,若为函数图像上一点,且直线与相切于点,其中为坐标原点,求的值;
(3) 设定义在上的函数在点处的切线方程为,若在定义域内恒成立,则称函数具有某种性质,简称“函数”.当时,试问函数是否为“函数”?若是,请求出此时切点的横坐标;若不是,清说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com