【题目】公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:![]()
其中
x 是仪器的月产量.
(1)将利润
表示为月产量
的函数;
(2)当月产量
为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)![]()
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为( )
A.an=(
)n﹣1
B.an=(
)n
C.an= ![]()
D.an= ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水
(单位:千克)清洗该蔬菜
千克后,蔬菜上残留的农药
(单位:微克)的统计表:
在坐标系中描出散点图,并判断变量
与
的相关性;
![]()
(2)若用解析式
作为蔬菜农药残量
与用水量
的回归方程,令
,计算平均值
和
,完成以下表格(填在答题卡中),求出
与
的回归方程.(
精确到0.1)
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据
)(附:线性回归方程计算公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公差不为0的等差数列
中,已知
且
,其前
项和
的最大值为( )
A. 25 B. 26 C. 27 D. 28
【答案】B
【解析】设等差数列
的公差为
,
∵
,
∴
,
整理得
,
∵
,
∴
.
∴
,
∴当
时,
.
故
最大,且
.选B.
点睛:求等差数列前n项和最值的常用方法:
①利用等差数列的单调性, 求出其正负转折项,便可求得和的最值;
②将等差数列的前n项和
(A、B为常数)看作关于n的二次函数,根据二次函数的性质求最值.
【题型】单选题
【结束】
9
【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
![]()
A.
B.
C. 90 D. 81
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an;
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:
.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P
向该圆引一条切线,切点为M,O为坐标原点,且有
,
求使得
取得最小值的点P的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com